Display options
Share it on

Mol Metab. 2021 Dec;54:101398. doi: 10.1016/j.molmet.2021.101398. Epub 2021 Nov 18.

Physical exercise shapes the mouse brain epigenome.

Molecular metabolism

Rocío G Urdinguio, Juan Ramon Tejedor, Manuel Fernández-Sanjurjo, Raúl F Pérez, Alfonso Peñarroya, Cecilia Ferrero, Helena Codina-Martínez, Carlos Díez-Planelles, Paola Pinto-Hernández, Juan Castilla-Silgado, Almudena Coto-Vilcapoma, Sergio Díez-Robles, Noelia Blanco-Agudín, Cristina Tomás-Zapico, Eduardo Iglesias-Gutiérrez, Benjamín Fernández-García, Agustin F Fernandez, Mario F Fraga

Affiliations

  1. Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain.
  2. Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain.
  3. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo 33006, Spain.
  4. Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain.
  5. Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain. Electronic address: [email protected].
  6. Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain. Electronic address: [email protected].
  7. Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain; Department of Organisms and Systems Biology (B.O.S), University of Oviedo, 33011 Oviedo, Asturias, Spain. Electronic address: [email protected].

PMID: 34801767 PMCID: PMC8661702 DOI: 10.1016/j.molmet.2021.101398

Abstract

OBJECTIVE: To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice.

METHODS: We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function.

RESULTS: Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions.

CONCLUSIONS: Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.

Copyright © 2021 The Authors. Published by Elsevier GmbH.. All rights reserved.

Keywords: Endurance training; Epigenome; Exercise; Hippocampus; Neuroplasticity; Resistance training; Transcriptome

References

  1. J Appl Physiol (1985). 2015 Apr 15;118(8):1059-66 - PubMed
  2. Nucleic Acids Res. 2017 Jan 4;45(D1):D61-D67 - PubMed
  3. Nucleic Acids Res. 2018 Jul 2;46(W1):W60-W64 - PubMed
  4. Front Neurol. 2018 Jan 23;9:8 - PubMed
  5. Nat Rev Genet. 2012 Jan 04;13(2):97-109 - PubMed
  6. Nature. 2020 Jul;583(7818):752-759 - PubMed
  7. Neuroscience. 2011 Sep 29;192:580-7 - PubMed
  8. Compr Physiol. 2012 Apr;2(2):1143-211 - PubMed
  9. Cell. 2014 Nov 6;159(4):738-49 - PubMed
  10. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3017-22 - PubMed
  11. Nat Protoc. 2017 Dec;12(12):2478-2492 - PubMed
  12. Med Sci Sports Exerc. 2020 Mar;52(3):589-597 - PubMed
  13. Br J Sports Med. 2015 Feb;49(4):248-54 - PubMed
  14. Clin Epigenetics. 2019 Jun 19;11(1):91 - PubMed
  15. Cold Spring Harb Perspect Med. 2018 Jun 1;8(6): - PubMed
  16. J Clin Invest. 2007 Jun;117(6):1595-604 - PubMed
  17. Clin Epigenetics. 2018 Sep 12;10(1):116 - PubMed
  18. Mol Neurobiol. 2019 Dec;56(12):8408-8419 - PubMed
  19. Int J Dev Neurosci. 2013 Oct;31(6):382-90 - PubMed
  20. Sci Rep. 2020 Sep 14;10(1):15048 - PubMed
  21. Physiology (Bethesda). 2013 Sep;28(5):330-58 - PubMed
  22. Int J Mol Sci. 2021 Apr 14;22(8): - PubMed
  23. Curr Biol. 2011 Jan 11;21(1):65-71 - PubMed
  24. Nature. 2007 Jan 11;445(7124):168-76 - PubMed
  25. Physiol Behav. 2009 Oct 19;98(4):433-40 - PubMed
  26. Cell Tissue Res. 2015 Jan;359(1):65-85 - PubMed
  27. Brain Neurosci Adv. 2020 Dec 18;4:2398212820979802 - PubMed
  28. J Appl Physiol (1985). 2002 Oct;93(4):1301-9 - PubMed
  29. FASEB J. 2013 Oct;27(10):4184-93 - PubMed
  30. Arch Neurol. 2011 Sep;68(9):1185-90 - PubMed
  31. Appl Physiol Nutr Metab. 2018 Aug;43(8):833-837 - PubMed
  32. N Engl J Med. 2008 Mar 13;358(11):1148-59 - PubMed
  33. Cancer Res. 2013 Jan 1;73(1):395-405 - PubMed
  34. Cell Death Dis. 2021 Mar 22;12(4):305 - PubMed
  35. Brain Behav Immun. 2011 Jul;25(5):1008-16 - PubMed
  36. Scand J Med Sci Sports. 2020 Feb;30(2):238-253 - PubMed
  37. Nat Neurosci. 2018 Oct;21(10):1359-1369 - PubMed
  38. Front Physiol. 2016 Aug 29;7:372 - PubMed
  39. Neurosci Lett. 2016 Nov 10;634:19-24 - PubMed
  40. J Alzheimers Dis. 2019;68(1):39-64 - PubMed
  41. J Vis Exp. 2017 Aug 30;(126): - PubMed
  42. J Sport Health Sci. 2019 May;8(3):201-217 - PubMed
  43. Sports Med. 2016 May;46(5):687-98 - PubMed
  44. Cell Syst. 2015 Dec 23;1(6):417-425 - PubMed
  45. J Vis Exp. 2014 Aug 14;(90):e51846 - PubMed
  46. Genome Biol. 2015 May 21;16:105 - PubMed
  47. Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9391-6 - PubMed
  48. Osteoporos Int. 2006 Jan;17(1):133-42 - PubMed
  49. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  50. Neurobiol Learn Mem. 2013 Mar;101:94-102 - PubMed
  51. Neurosci Biobehav Rev. 2017 Sep;80:443-456 - PubMed
  52. Cell Metab. 2018 Jun 05;27(6):1176-1199 - PubMed
  53. J Physiol. 2016 Aug 15;594(16):4485-98 - PubMed
  54. Nat Rev Neurol. 2012 Mar 13;8(4):189-202 - PubMed
  55. Nat Rev Neurosci. 2008 Jan;9(1):58-65 - PubMed
  56. JAMA. 1989 Nov 3;262(17):2395-401 - PubMed
  57. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7778-83 - PubMed
  58. Eur J Neurodegener Dis. 2012 Aug;1(2):195-211 - PubMed
  59. Nucleic Acids Res. 2019 Jun 20;47(11):5587-5602 - PubMed
  60. Nature. 2010 Mar 11;464(7286):306-10 - PubMed
  61. Nucleic Acids Res. 2012 Jan;40(1):116-31 - PubMed
  62. J Strength Cond Res. 2012 Mar;26(3):618-24 - PubMed
  63. Neuron. 2013 Sep 18;79(6):1109-1122 - PubMed
  64. Sports Med. 2018 Mar;48(3):499-505 - PubMed
  65. Scand J Med Sci Sports. 2015 Dec;25 Suppl 3:1-72 - PubMed
  66. Front Behav Neurosci. 2017 Oct 23;11:202 - PubMed

Publication Types