Display options
Share it on

Scand J Immunol. 2022 Jan 02;e13139. doi: 10.1111/sji.13139. Epub 2022 Jan 02.

B cell class switching in intestinal immunity in health and disease.

Scandinavian journal of immunology

Aaron Fleming, Tomas Castro-Dopico, Menna R Clatworthy

Affiliations

  1. Molecular Immunity Unit, Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.
  2. The Francis Crick Institute, London, UK.
  3. Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton, UK.
  4. NIHR Cambridge Biomedical Research Centre, Cambridge, UK.

PMID: 34978077 DOI: 10.1111/sji.13139

Abstract

The gastrointestinal tract is colonized by trillions of commensal microorganisms that collectively form the microbiome and make essential contributions to organism homeostasis. The intestinal immune system must tolerate these beneficial commensals, whilst preventing pathogenic organisms from systemic spread. Humoral immunity plays a key role in this process, with large quantities of immunoglobulin (Ig)A secreted into the lumen on a daily basis, regulating the microbiome and preventing bacteria from encroaching on the epithelium. However, there is an increasing appreciation of the role of IgG antibodies in intestinal immunity, including beneficial effects in neonatal immune development, pathogen and tumour resistance, but also of pathological effects in driving chronic inflammation in inflammatory bowel disease (IBD). These antibody isotypes differ in effector function, with IgG exhibiting more proinflammatory capabilities compared with IgA. Therefore, the process that leads to the generation of different antibody isotypes, class-switch recombination (CSR), requires careful regulation and is orchestrated by the immunological cues generated by the prevalent local challenge. In general, an initiating signal such as CD40 ligation on B cells leads to the induction of activation-induced cytidine deaminase (AID), but a second cytokine-mediated signal determines which Ig heavy chain is expressed. Whilst the cytokines driving intestinal IgA responses are well-studied, there is less clarity on how IgG responses are generated in the intestine, and how these cues might become dysfunctional in IBD. Here, we review the key mechanisms regulating class switching to IgA vs IgG in the intestine, processes that could be therapeutically manipulated in infection and IBD.

© 2022 The Authors. Scandinavian Journal of Immunology published by John Wiley & Sons Ltd on behalf of The Scandinavian Foundation for Immunology.

Keywords: B cells; antibodies; intestinal immunity

References

  1. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10:159-169. doi:10.1038/nri2710 - PubMed
  2. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268-1273. doi:10.1126/science.1223490 - PubMed
  3. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17:219-232. doi:10.1038/nri.2017.7 - PubMed
  4. Bunker JJ, Bendelac A. IgA responses to microbiota. Immunity. 2018;49:211-224. doi:10.1016/j.immuni.2018.08.011 - PubMed
  5. Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC. IgA function in relation to the intestinal microbiota. Annu Rev Immunol. 2018;36:359-381. doi:10.1146/annurev-immunol-042617-053238 - PubMed
  6. Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol. 2010;28:243-273. doi:10.1146/annurev-immunol-030409-101314 - PubMed
  7. Brandtzaeg P, Johansen F-E. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev. 2005;206:32-63. doi:10.1111/j.0105-2896.2005.00283.x - PubMed
  8. Rüthlein J, Ibe M, Burghardt W, Mössner J, Auer IO. Immunoglobulin G (IgG), IgG1, and IgG2 determinations from endoscopic biopsy specimens in control, Crohn's disease, and ulcerative colitis subjects. Gut. 1992;33:507-512. doi:10.1136/gut.33.4.507 - PubMed
  9. Kobayashi K, Asakura H, Hamada Y, et al. T lymphocyte subpopulations and immunoglobulin-containing cells in the colonic mucosa of ulcerative colitis; a morphometric and immunohistochemical study. J Clin Lab Immunol. 1988;25:63-68. - PubMed
  10. Helgeland L, Tysk C, Jarnerot G, et al. IgG subclass distribution in serum and rectal mucosa of monozygotic twins with or without inflammatory bowel disease. Gut. 1992;33:1358-1364. doi:10.1136/gut.33.10.1358 - PubMed
  11. Scott MG, Nahm MH, Macke K, Nash GS, Bertovich MJ, MacDermott RP. Spontaneous secretion of IgG subclasses by intestinal mononuclear cells: differences between ulcerative colitis, Crohn's disease, and controls. Clin Exp Immunol. 1986;66:209-215. - PubMed
  12. Castro-Dopico T, Clatworthy MR. IgG and Fcγ receptors in Intestinal Immunity and Inflammation. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.00805 - PubMed
  13. Fenton TM, Jørgensen PB, Niss K, et al. Immune profiling of human gut-associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region-specific immunity. Immunity. 2020;52:557-570.e556. doi:10.1016/j.immuni.2020.02.001 - PubMed
  14. Tsuji M, Suzuki K, Kitamura H, et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity. 2008;29:261-271. doi:10.1016/j.immuni.2008.05.014 - PubMed
  15. Hamada H, Hiroi T, Nishiyama Y, et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol. 2002;168:57-64. doi:10.4049/jimmunol.168.1.57 - PubMed
  16. Cyster JG, Allen CDC. B cell responses: cell interaction dynamics and decisions. Cell. 2019;177:524-540. doi:10.1016/j.cell.2019.03.016 - PubMed
  17. Puga I, Cols M, Barra CM, et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 2012;13:170-180. doi:10.1038/ni.2194 - PubMed
  18. Balázs M, Martin F, Zhou T, Kearney J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity. 2002;17:341-352. doi:10.1016/s1074-7613(02)00389-8 - PubMed
  19. Merluzzi S, Frossi B, Gri G, et al. Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells. Blood. 2010;115:2810-2817. doi:10.1182/blood-2009-10-250126 - PubMed
  20. Kuley R, Draves KE, Fuller DH, et al. B cell activating factor (BAFF) from neutrophils and dendritic cells is required for protective B cell responses against Salmonella typhimurium infection. PLoS One. 2021;16:e0259158. doi:10.1371/journal.pone.0259158 - PubMed
  21. Giordano D, Kuley R, Draves KE, et al. BAFF produced by neutrophils and dendritic cells is regulated differently and has distinct roles in antibody responses and protective immunity against West Nile Virus. J Immunol. 2020;204:1508-1520. doi:10.4049/jimmunol.1901120 - PubMed
  22. Vinuesa CG, Chang PP. Innate B cell helpers reveal novel types of antibody responses. Nat Immunol. 2013;14:119-126. doi:10.1038/ni.2511 - PubMed
  23. Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat Rev Immunol. 2012;12:282-294. doi:10.1038/nri3190 - PubMed
  24. Baumgarth N. A Hard(y) look at B-1 cell development and function. J Immunol. 2017;199:3387-3394. doi:10.4049/jimmunol.1700943 - PubMed
  25. Paul WE. Fundamental Immunology. 7th ed. Lippincott Williams & Wilkins; 2013. - PubMed
  26. Tangye SG. To B1 or not to B1: that really is still the question! Blood. 2013;121:5109-5110. doi:10.1182/blood-2013-05-500074 - PubMed
  27. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70. J Exp Med. 2011;208:67-80. doi:10.1084/jem.20101499 - PubMed
  28. Covens K, Verbinnen B, Geukens N, et al. Characterization of proposed human B-1 cells reveals pre-plasmablast phenotype. Blood. 2013;121:5176-5183. doi:10.1182/blood-2012-12-471953 - PubMed
  29. Li W, Batliwalla F, Rothstein TL. Human B-1 cells are not preplasmablasts: analysis of microarray data and other issues. Blood. 2013;122:3691-3693. doi:10.1182/blood-2013-08-520031 - PubMed
  30. Lin M, Du L, Brandtzaeg P, Pan-Hammarström Q. IgA subclass switch recombination in human mucosal and systemic immune compartments. Mucosal Immunol. 2014;7:511-520. doi:10.1038/mi.2013.68 - PubMed
  31. Plaut AG, Wistar R Jr, Capra JD. Differential susceptibility of human IgA immunoglobulins to streptococcal IgA protease. J Clin Invest. 1974;54:1295-1300. doi:10.1172/jci107875 - PubMed
  32. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667-685. doi:10.1038/nri3738 - PubMed
  33. James KR, Gomes T, Elmentaite R, et al. Distinct microbial and immune niches of the human colon. Nat Immunol. 2020;21:343-353. doi:10.1038/s41590-020-0602-z - PubMed
  34. Fagarasan S. Evolution, development, mechanism and function of IgA in the gut. Curr Opin Immunol. 2008;20:170-177. doi:10.1016/j.coi.2008.04.002 - PubMed
  35. Monteiro RC, Van De Winkel JG. IgA Fc receptors. Annu Rev Immunol. 2003;21:177-204. doi:10.1146/annurev.immunol.21.120601.141011 - PubMed
  36. Duchemin M, Khamassi M, Xu L, Tudor D, Bomsel M. IgA targeting human immunodeficiency virus-1 envelope gp41 triggers antibody-dependent cellular cytotoxicity cross-clade and cooperates with gp41-specific IgG to increase cell lysis. Front Immunol. 2018;9:244. doi:10.3389/fimmu.2018.00244 - PubMed
  37. Wills S, Hwang K-K, Liu P, et al. HIV-1-specific IgA monoclonal antibodies from an HIV-1 Vaccinee mediate Galactosylceramide blocking and phagocytosis. J Virol. 2018;92: doi:10.1128/JVI.01552-17 - PubMed
  38. Mazanec MB, Kaetzel CS, Lamm ME, Fletcher D, Nedrud JG. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci U S A. 1992;89:6901-6905. - PubMed
  39. Bidgood SR, Tam JC, McEwan WA, Mallery DL, James LC. Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells. Proc Natl Acad Sci U S A. 2014;111:13463-13468. doi:10.1073/pnas.1410980111 - PubMed
  40. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:1-17. doi:10.3389/fimmu.2014.00520 - PubMed
  41. Bruhns P, Iannascoli B, England P, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716-3725. doi:10.1182/blood-2008-09-179754 - PubMed
  42. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34-47. doi:10.1038/nri2206 - PubMed
  43. von Gunten S, Smith DF, Cummings RD, et al. Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J Allergy Clin Immunol. 2009;123:1-16. doi:10.1016/j.jaci.2009.03.013 - PubMed
  44. Stapleton NM, Andersen JT, Stemerding AM, et al. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat Commun. 2011;2:599. doi:10.1038/ncomms1608 - PubMed
  45. van der Neut Kolfschoten M, Schuurman J, Losen M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007;317:1554-1557. doi:10.1126/science.1144603 - PubMed
  46. Aalberse RC, Schuurman J. IgG4 breaking the rules. Immunology. 2002;105:9-19. doi:10.1046/j.0019-2805.2001.01341.x - PubMed
  47. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670-673. doi:10.1126/science.1129594 - PubMed
  48. Li T, DiLillo DJ, Bournazos S, et al. Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci. 2017;114:3485-3490. doi:10.1073/pnas.1702173114 - PubMed
  49. Pincetic A, Bournazos S, DiLillo DJ, et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol. 2014;15:707-716. doi:10.1038/ni.2939 - PubMed
  50. Karsten CM, Pandey MK, Figge J, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat Med. 2012;18:1401-1406. doi:10.1038/nm.2862 - PubMed
  51. Lauc G, Huffman JE, Pučić M, et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013;9:e1003225. doi:10.1371/journal.pgen.1003225 - PubMed
  52. Theodoratou E, Campbell H, Ventham NT, et al. The role of glycosylation in IBD. Nat Rev Gastroenterol Hepatol. 2014;11:588-600. doi:10.1038/nrgastro.2014.78 - PubMed
  53. Koch M, Reiner G, Lugo K, et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell. 2016;165:827-841. doi:10.1016/j.cell.2016.04.055 - PubMed
  54. Nimmerjahn F, Ravetch JV. Fc-receptors as regulators of immunity. Adv Immunol. 2007;96:179-204. doi:10.1016/S0065-2776(07)96005-8 - PubMed
  55. Smith KGC, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10:328-343. doi:10.1038/nri2762 - PubMed
  56. Pricop L, Redecha P, Teillaud JL, et al. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. J Immunol. 2001;166:531-537. - PubMed
  57. Liu Y, Masuda E, Blank MC, et al. Cytokine-mediated regulation of activating and inhibitory Fc gamma receptors in human monocytes. J Leukoc Biol. 2005;77:767-776. doi:10.1189/jlb.0904532 - PubMed
  58. Willcocks LC, Smith KG, Clatworthy MR. Low-affinity Fcgamma receptors, autoimmunity and infection. Expert Rev Mol Med. 2009;11:e24. doi:10.1017/S1462399409001161 - PubMed
  59. Clatworthy MR. In: Ackerman ME, Nimmerjahn F, eds. Antibody Fc. Linking Adaptive and Innate Immunity. Ch. 12, Academic Press, Elsevier. 2014:217-238. - PubMed
  60. Shields RL, Lai J, Keck R, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277:26733-26740. doi:10.1074/jbc.M202069200 - PubMed
  61. Ferrara C, Stuart F, Sondermann P, Brunker P, Umana P. The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem. 2006;281:5032-5036. doi:10.1074/jbc.M510171200 - PubMed
  62. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21-50. doi:10.1146/annurev.immunol.25.022106.141702 - PubMed
  63. Lux A, Nimmerjahn F. Impact of differential glycosylation on IgG activity. Adv Exp Med Biol. 2011;780:113-124. doi:10.1007/978-1-4419-5632-3_10 - PubMed
  64. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science. 2005;310:1510-1512. doi:10.1126/science.1118948 - PubMed
  65. Caballero-Flores G, Sakamoto K, Zeng MY, et al. Maternal immunization confers protection to the offspring against an attaching and effacing pathogen through delivery of IgG in breast milk. Cell Host Microbe. 2019;1-11. doi:10.1016/J.CHOM.2018.12.015 - PubMed
  66. Zeng MY, Cisalpino D, Varadarajan S, et al. Gut microbiota-induced immunoglobulin g controls systemic infection by symbiotic bacteria and pathogens. Immunity. 2016;44:647-658. doi:10.1016/j.immuni.2016.02.006 - PubMed
  67. Masuda A, Yoshida M, Shiomi H, et al. Fcgamma receptor regulation of Citrobacter rodentium infection. Infect Immun. 2008;76:1728-1737. doi:10.1128/IAI.01493-07 - PubMed
  68. Maaser C, Housley MP, Iimura M, et al. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect Immun. 2004;72:3315-3324. doi:10.1128/IAI.72.6.3315-3324.2004 - PubMed
  69. Ohsaki A, Venturelli N, Buccigrosso TM, et al. Maternal IgG immune complexes induce food allergen-specific tolerance in offspring. J Exp Med. 2018;215(1):91-113. doi:10.1084/jem.20171163 - PubMed
  70. Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-1302. doi:10.1126/science.aad2571 - PubMed
  71. Baker K, Rath T, Flak M, et al. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer. Immunity. 2013;39:1095-1107. doi:10.1016/j.immuni.2013.11.003 - PubMed
  72. Castro-Dopico T, Dennison TW, Ferdinand JR, et al. Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity. 2019;50:1099-1114.e1010. doi:10.1016/j.immuni.2019.02.006 - PubMed
  73. Uo M, Hisamatsu T, Miyoshi J, et al. Mucosal CXCR4+ IgG plasma cells contribute to the pathogenesis of human ulcerative colitis through FcγR-mediated CD14 macrophage activation. Gut. 2013;62:1734-1744. doi:10.1136/gutjnl-2012-303063 - PubMed
  74. Kobayashi K, Qiao S, Yoshida M, et al. An FcRn-dependent role for anti-flagellin immunoglobulin G in pathogenesis of colitis in mice. Gastroenterology. 2009;137:1746-1756.e1741. doi:10.1053/j.gastro.2009.07.059 - PubMed
  75. Elmentaite R, Ross ADB, Roberts K, et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn's disease. Dev Cell. 2020;55:771-783.e775. doi:10.1016/j.devcel.2020.11.010 - PubMed
  76. Xu Z, Zan H, Pone EJ, Mai T, Casali P. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012;12:517-531. doi:10.1038/nri3216 - PubMed
  77. Methot SP, Di Noia JM. Molecular mechanisms of somatic hypermutation and class switch recombination. Adv Immunol. 2017;133:37-87. doi:10.1016/bs.ai.2016.11.002 - PubMed
  78. Yu K, Lieber MR. Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit Rev Biochem Mol Biol. 2019;54:333-351. doi:10.1080/10409238.2019.1659227 - PubMed
  79. Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 2008;26:261-292. doi:10.1146/annurev.immunol.26.021607.090248 - PubMed
  80. Lorenz M, Jung S, Radbruch A. Switch transcripts in immunoglobulin class switching. Science. 1995;267:1825-1828. doi:10.1126/science.7892607 - PubMed
  81. Zarrin AA, Tian M, Wang J, Borjeson T, Alt FW. Influence of switch region length on immunoglobulin class switch recombination. Proc Natl Acad Sci U S A. 2005;102:2466-2470. doi:10.1073/pnas.0409847102 - PubMed
  82. Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol. 2003;4:442-451. doi:10.1038/ni919 - PubMed
  83. Muramatsu M, Kinoshita K, Fagarasan S, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553-563. doi:10.1016/s0092-8674(00)00078-7 - PubMed
  84. Guikema JEJ, Linehan EK, Tsuchimoto D, et al. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med. 2007;204:3017-3026. doi:10.1084/jem.20071289 - PubMed
  85. Tarlinton D. B cells still front and centre in immunology. Nat Rev Immunol. 2019;19:85-86. doi:10.1038/s41577-018-0107-2 - PubMed
  86. De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol. 2015;15:137-148. doi:10.1038/nri3804 - PubMed
  87. Cerutti A. The regulation of IgA class switching. Nat Rev Immunol. 2008;8:421-434. doi:10.1038/nri2322 - PubMed
  88. Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly - TFH cells in human health and disease. Nat Rev Immunol. 2013;13:412-426. doi:10.1038/nri3447 - PubMed
  89. Weinstein JS, Herman EI, Lainez B, et al. TFH cells progressively differentiate to regulate the germinal center response. Nat Immunol. 2016;17:1197-1205. doi:10.1038/ni.3554 - PubMed
  90. Suzuki K, Maruya M, Kawamoto S, et al. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity. 2010;33:71-83. doi:10.1016/j.immuni.2010.07.003 - PubMed
  91. Trindade BC, Ceglia S, Berthelette A, et al. The cholesterol metabolite 25-hydroxycholesterol restrains the transcriptional regulator SREBP2 and limits intestinal IgA plasma cell differentiation. Immunity. 2021;54:2273-2287.e2276. doi:10.1016/j.immuni.2021.09.004 - PubMed
  92. He B, Santamaria R, Xu W, et al. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat Immunol. 2010;11:836-845. doi:10.1038/ni.1914 - PubMed
  93. Pone EJ, Zan H, Zhang J, et al. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol. 2010;30:1-29. doi:10.1615/CritRevImmunol.v30.i1.10 - PubMed
  94. Fagarasan S, Honjo T. T-Independent immune response: new aspects of B cell biology. Science. 2000;290:89-92. doi:10.1126/science.290.5489.89 - PubMed
  95. Grasset EK, Chorny A, Casas-Recasens S, et al. Gut T cell-independent IgA responses to commensal bacteria require engagement of the TACI receptor on B cells. Sci Immunol. 2020;5: doi:10.1126/sciimmunol.aat7117 - PubMed
  96. Chu VT, Fröhlich A, Steinhauser G, et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol. 2011;12:151-159. doi:10.1038/ni.1981 - PubMed
  97. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474:298-306. doi:10.1038/nature10208 - PubMed
  98. Magri G, Miyajima M, Bascones S, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364. doi:10.1038/ni.2830 - PubMed
  99. Tezuka H, Abe Y, Iwata M, et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature. 2007;448:929-933. doi:10.1038/nature06033 - PubMed
  100. He B, Xu W, Santini PA, et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity. 2007;26:812-826. doi:10.1016/j.immuni.2007.04.014 - PubMed
  101. Kaminski DA, Stavnezer J. Stimuli that enhance IgA class switching increase histone 3 acetylation at S alpha, but poorly stimulate sequential switching from IgG2b. Eur J Immunol. 2007;37:240-251. doi:10.1002/eji.200636645 - PubMed
  102. Koscsó B, Kurapati S, Rodrigues RR, et al. Gut-resident CX3CR1(hi) macrophages induce tertiary lymphoid structures and IgA response in situ. Sci Immunol. 2020;5:eaax0062. doi:10.1126/sciimmunol.aax0062 - PubMed
  103. Park S-R, Zan H, Pal Z, et al. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat Immunol. 2009;10:540-550. doi:10.1038/ni.1725 - PubMed
  104. Mohr E, Cunningham AF, Toellner KM, et al. IFN-{gamma} produced by CD8 T cells induces T-bet-dependent and -independent class switching in B cells in responses to alum-precipitated protein vaccine. Proc Natl Acad Sci USA. 2010;107:17292-17297. doi:10.1073/pnas.1004879107 - PubMed
  105. Peng SL, Szabo SJ, Glimcher LH. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci USA. 2002;99:5545-5550. doi:10.1073/pnas.082114899 - PubMed
  106. Mitsdoerffer M, Lee Y, Jager A, et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci USA. 2010;107:14292-14297. doi:10.1073/pnas.1009234107 - PubMed
  107. Pfeifle R, Rothe T, Ipseiz N, et al. Regulation of autoantibody activity by the IL-23 - T H 17 axis determines the onset of autoimmune disease. Nat Immunol. 2016;18:1-7. doi:10.1038/ni.3579 - PubMed
  108. Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol. 2012;12:821-832. doi:10.1038/nri3322 - PubMed
  109. Lycke NY, Bemark M. The role of Peyer's patches in synchronizing gut iga responses. Front Immunol. 2012;3:1-9. doi:10.3389/fimmu.2012.00329 - PubMed
  110. Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol. 2017;10:1361-1374. doi:10.1038/mi.2017.62 - PubMed
  111. Kato LM, Kawamoto S, Maruya M, Fagarasan S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol Cell Biol. 2014;92:49-56. doi:10.1038/icb.2013.54 - PubMed
  112. Milpied PJ, McHeyzer-Williams MG. High-affinity IgA needs TH17 cell functional plasticity. Nat Immunol. 2013;14:313-315. doi:10.1038/ni.2567 - PubMed
  113. Masahata K, Umemoto E, Kayama H, et al. Generation of colonic IgA-secreting cells in the caecal patch. Nat Commun. 2014;5:3704. doi:10.1038/ncomms4704 - PubMed
  114. Reboldi A, Cyster JG. Peyer's patches: organizing B-cell responses at the intestinal frontier. Immunol Rev. 2016;271:230-245. doi:10.1111/imr.12400 - PubMed
  115. Bunker J, Flynn T, Koval J, et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity. 2015;43:541-553. doi:10.1016/j.immuni.2015.08.007 - PubMed
  116. Kawamoto S, Maruya M, Kato L, et al. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41:152-165. doi:10.1016/j.immuni.2014.05.016 - PubMed
  117. Hirota K, Turner J-E, Villa M, et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 2013;14:372-379. doi:10.1038/ni.2552 - PubMed
  118. Tsuji M, Komatsu N, Kawamoto S, et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science. 2009;323:1488-1492. doi:10.1126/science.1169152 - PubMed
  119. Casola S, Otipoby KL, Alimzhanov M, et al. B cell receptor signal strength determines B cell fate. Nat Immunol. 2004;5:317-327. doi:10.1038/ni1036 - PubMed
  120. Kawamoto S, Tran TH, Maruya M, et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science. 2012;336:485-489. doi:10.1126/science.1217718 - PubMed
  121. Benckert J, Schmolka N, Kreschel C, et al. The majority of intestinal IgA + and IgG + plasmablasts in the human gut are antigen-specific. J Clin Invest. 2011;121:1946-1955. doi:10.1172/JCI44447DS1 - PubMed
  122. Bergqvist P, Gardby E, Stensson A, Bemark M, Lycke NY. Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J Immunol. 2006;177:7772-7783. doi:10.4049/jimmunol.177.11.7772 - PubMed
  123. Macpherson AJ, Gatto D, Sainsbury E, et al. A primitive T Cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science. 2000;288:2222-2226. doi:10.1126/science.288.5474.2222 - PubMed
  124. Ansaldo E, Slayden LC, Ching KL, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184. doi:10.1126/science.aaw7479 - PubMed
  125. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25:1096-1103. doi:10.1038/s41591-019-0495-2 - PubMed
  126. Bunker JJ, Erickson SA, Flynn TM, et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science. 2017;358:eaan6619. doi:10.1126/science.aan6619 - PubMed
  127. Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19:59-69. doi:10.1016/j.smim.2006.10.002 - PubMed
  128. Li H, Limenitakis JP, Greiff V, et al. Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature. 2020;584:274-278. doi:10.1038/s41586-020-2564-6 - PubMed
  129. Rollenske T, Burkhalter S, Muerner L, et al. Parallelism of intestinal secretory IgA shapes functional microbial fitness. Nature. 2021;598:657-661. doi:10.1038/s41586-021-03973-7 - PubMed
  130. Cazac BB, Roes J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity. 2000;13:443-451. doi:10.1016/S1074-7613(00)00044-3 - PubMed
  131. Gros MJ, Naquet P, Guinamard RR. Cell intrinsic TGF-beta 1 regulation of B cells. J Immunol. 2008;180:8153-8158. doi:10.4049/jimmunol.180.12.8153 - PubMed
  132. Reboldi A, Arnon TI, Rodda LB, et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches. Science. 2016;352:1-10. doi:10.1126/science.aaf4822 - PubMed
  133. Mora JR, Iwata M, Eksteen B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 2006;314:1157-1160. doi:10.1126/science.1132742 - PubMed
  134. Castigli E, Scott S, Dedeoglu F, et al. Impaired IgA class switching inn APRIL-deficient mice. Proc Natl Acad Sci USA. 2004;101:3903-3908. doi:10.1073/pnas.0307348101 - PubMed
  135. Castigli E, Wilson SA, Scott S, et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med. 2005;201:35-39. doi:10.1084/jem.20032000 - PubMed
  136. Chu V, Beller A, Rausch S, et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity. 2014;40:582-593. doi:10.1016/j.immuni.2014.02.014 - PubMed
  137. Yel L. Selective IgA deficiency. J Clin Immunol. 2010;30:10-16. doi:10.1007/s10875-009-9357-x - PubMed
  138. Yazdani R, Azizi G, Abolhassani H, Aghamohammadi A. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand J Immunol. 2017;85:3-12. doi:10.1111/sji.12499 - PubMed
  139. Cunningham-Rundles C, Brandeis WE, Pudifin DJ, Day NK, Good RA. Autoimmunity in selective IgA deficiency: relationship to anti-bovine protein antibodies, circulating immune complexes and clinical disease. Clin Exp Immunol. 1981;45:299-304. - PubMed
  140. Smulski CR, Eibel H. BAFF and BAFF-receptor in B cell selection and survival. Front Immunol. 2018;9:1-10. doi:10.3389/fimmu.2018.02285 - PubMed
  141. Torres J, Mehandru S, Colombel J-F, Peyrin-Biroulet L. Crohn's disease. Lancet. 2017;389:1741-1755. doi:10.1016/S0140-6736(16)31711-1 - PubMed
  142. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119-124. doi:10.1038/nature11582 - PubMed
  143. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel J-F. Ulcerative colitis. Lancet. 2017;389:1756-1770. doi:10.1016/S0140-6736(16)32126-2 - PubMed
  144. Blumberg R, Powrie FM. Disease, and back to health: a metastable journey. Sci Transl Med. 2012;4:137rv137. doi:10.1126/scitranslmed.3004184 - PubMed
  145. Yilmaz B, Juillerat P, Øyås O, et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med. 2019;25:1. doi:10.1038/s41591-018-0308-z - PubMed
  146. Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology. 2004;127:412-421. doi:10.1053/j.gastro.2004.04.061 - PubMed
  147. Manukian G, Kivolowitz C, DeAngelis T, et al. IgA-coated E coli enriched in Crohn's disease spondyloarthritis promote TH17-dependent inflammation. Sci Transl Med. 2017;9:eaaf9655. doi:10.1126/scitranslmed.aaf9655 - PubMed
  148. Powrie F, Leach MW, Mauze S, et al. Inhibition of Thl responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1994;1:553-562. doi:10.1016/1074-7613(94)90045-0 - PubMed
  149. Ahern PP, Schiering C, Buonocore S, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33:279-288. doi:10.1016/j.immuni.2010.08.010 - PubMed
  150. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease. Gene. 2006;13:8-11. - PubMed
  151. Sandborn WJ, Gasink C, Gao L-L, et al. Ustekinumab induction and maintenance therapy in refractory Crohn's disease. N Engl J Med. 2012;367:1519-1528. doi:10.1056/NEJMoa1203572 - PubMed
  152. Leiper K, Martin K, Ellis A, et al. Randomised placebo-controlled trial of rituximab (anti-CD20) in active ulcerative colitis. Gut. 2011;60:1520-1526. doi:10.1136/gut.2010.225482 - PubMed
  153. Uzzan M, Ko HM, Rosenstein AK, Pourmand K, Colombel JF, Mehandru S. Efficient long-term depletion of CD20 + B cells by rituximab does not affect gut-resident plasma cells. Ann N Y Acad Sci. 2018;1415:5-10. doi:10.1111/nyas.13577 - PubMed
  154. Morita K, Shibano T, Maekawa K, et al. Crohn's disease following rituximab treatment in a patient with refractory nephrotic syndrome. CEN Case Rep. 2019;8:55-60. doi:10.1007/s13730-018-0364-8 - PubMed
  155. Varma P, Falconer J, Aga A, Prince HM, Pianko S. Rituximab-induced Crohn’s disease. Scand J Gastroenterol. 2017;52:606-608. doi:10.1080/00365521.2017.1280530 - PubMed
  156. Asano K, Matsushita T, Umeno J, et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet. 2009;41:1325-1329. doi:10.1038/ng.482 - PubMed
  157. Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell. 2019;178:714-730.e722. doi:10.1016/j.cell.2019.06.029 - PubMed
  158. Martin JC, Chang C, Boschetti G, et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell. 2019;178:1493-1508.e20. doi:10.1016/j.cell.2019.08.008 - PubMed
  159. Rengarajan S, Vivio EE, Parkes M, et al. Dynamic immunoglobulin responses to gut bacteria during inflammatory bowel disease. Gut Microbes. 2020;11(3):405-420. doi:10.1080/19490976.2019.1626683 - PubMed
  160. Ahn J, Son S, Oliveira SC, Barber GN. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. Cell Rep. 2017;21:3873-3884. doi:10.1016/j.celrep.2017.11.101 - PubMed
  161. Brandwein SL, McCabe RP, Cong Y, et al. Spontaneously colitic C3H/HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric bacterial flora. J Immunol. 1997;159:44-52. - PubMed
  162. Caruso R, Mathes T, Martens EC, et al. A specific gene-microbe interaction drives the development of Crohn’s disease-like colitis in mice. Sci Immunol. 2019;4:eaaw4341. doi:10.1126/sciimmunol.aaw4341 - PubMed
  163. Slack E, Hapfelmeier S, Stecher B, et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science. 2009;325:617-620. doi:10.1126/science.1172747 - PubMed
  164. Choung RS, Princen F, Stockfisch TP, et al. Serologic microbial associated markers can predict Crohn's disease behaviour years before disease diagnosis. Aliment Pharmacol Ther. 2016;43:1300-1310. doi:10.1111/apt.13641 - PubMed
  165. Kamada N, Sakamoto K, Seo S-U, et al. Humoral immunity in the gut selectively targets phenotypically virulent attaching-and-effacing bacteria for intraluminal elimination. Cell Host Microbe. 2015;17:617-627. doi:10.1016/j.chom.2015.04.001 - PubMed
  166. Simmons CP, Clare S, Ghaem-Maghami M, et al. Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun. 2003;71:5077-5086. doi:10.1128/IAI.71.9.5077 - PubMed
  167. Kim Y-G, Kamada N, Shaw M, et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity. 2011;34:769-780. doi:10.1016/j.immuni.2011.04.013 - PubMed
  168. Miyoshi E, Shinzaki S, Fujii H, Iijima H, Kamada Y, Takehara T. Role of aberrant IgG glycosylation in the pathogenesis of inflammatory bowel disease. Proteomics Clin Appl. 2016;10:384-390. doi:10.1002/prca.201500089 - PubMed
  169. Uzzan M, Colombel JF, Cerutti A, Treton X, Mehandru S. B Cell-Activating Factor (BAFF)-targeted B cell therapies in inflammatory bowel diseases. Dig Dis Sci. 2016;61:3407-3424. doi:10.1007/s10620-016-4317-9 - PubMed
  170. Banham GD, Flint SM, Torpey N, et al. Belimumab in kidney transplantation: an experimental medicine, randomised, placebo-controlled phase 2 trial. Lancet. 2018;391:2619-2630. doi:10.1016/S0140-6736(18)30984-X - PubMed
  171. Moore PA, Belvedere O, Orr A, et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science. 1999;285:260-263. doi:10.1126/science.285.5425.260 - PubMed
  172. Hsu BL, Harless SM, Lindsley RC, Hilbert DM, Cancro MP. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol. 2002;168:5993-5996. doi:10.4049/jimmunol.168.12.5993 - PubMed
  173. Do RKG, Hatada E, Lee H, et al. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med. 2000;192:953-964. doi:10.1084/jem.192.7.953 - PubMed
  174. Takeuchi T, Miyauchi E, Kanaya T, et al. Acetate differentially regulates IgA reactivity to commensal bacteria. Nature. 2021;595:560-564. doi:10.1038/s41586-021-03727-5 - PubMed
  175. Suzuki M, Sujino T, Chiba S, et al. Host-microbe cross-talk governs amino acid chirality to regulate survival and differentiation of B cells. Sci Adv. 2021;7. doi:10.1126/sciadv.abd6480 - PubMed
  176. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445-489. doi:10.1146/annurev-immunol-030409-101212 - PubMed
  177. McKenzie ANJ, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity. 2014;41:366-374. doi:10.1016/j.immuni.2014.09.006 - PubMed
  178. Knox JJ, Myles A, Cancro MP. T-bet(+) memory B cells: generation, function, and fate. Immunol Rev. 2019;288:149-160. doi:10.1111/imr.12736 - PubMed
  179. Chang LY, Li Y, Kaplan DE. Hepatitis C viraemia reversibly maintains subset of antigen-specific T-bet+ tissue-like memory B cells. J Viral Hepat. 2017;24:389-396. doi:10.1111/jvh.12659 - PubMed
  180. Wang S, Wang J, Kumar V, et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11c(hi)T-bet(+) B cells in SLE. Nat Commun. 2018;9:1758. doi:10.1038/s41467-018-03750-7 - PubMed
  181. Couloume L, Ferrant J, Le Gallou S, et al. Mass cytometry identifies expansion of T-bet(+) B cells and CD206(+) monocytes in early multiple sclerosis. Front Immunol. 2021;12:653577. doi:10.3389/fimmu.2021.653577 - PubMed
  182. Eccles JD, Turner RB, Kirk NA, et al. T-bet+ memory B cells link to local cross-reactive IgG upon human rhinovirus infection. Cell Rep. 2020;30:351-366.e357. doi:10.1016/j.celrep.2019.12.027 - PubMed
  183. Rubtsova K, Rubtsov AV, Thurman JM, et al. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J Clin Invest. 2017;127:1392-1404. doi:10.1172/jci91250 - PubMed
  184. Wang NS, McHeyzer-Williams LJ, Okitsu SL, et al. Divergent transcriptional programming of class-specific B cell memory by T-bet and RORα. Nat Immunol. 2012;13:604-611. doi:10.1038/ni.2294 - PubMed
  185. Rubtsov AV, Rubtsova K, Fischer A, et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c⁺ B-cell population is important for the development of autoimmunity. Blood. 2011;118:1305-1315. doi:10.1182/blood-2011-01-331462 - PubMed
  186. Harris DP, Goodrich S, Gerth AJ, Peng SL, Lund FE. Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol. 2005;174:6781-6790. doi:10.4049/jimmunol.174.11.6781 - PubMed
  187. Larousserie F, Charlot P, Bardel E, et al. Differential effects of IL-27 on human B cell subsets. J Immunol. 2006;176:5890-5897. doi:10.4049/jimmunol.176.10.5890 - PubMed
  188. Rivera-Correa J, Guthmiller JJ, Vijay R, et al. Plasmodium DNA-mediated TLR9 activation of T-bet(+) B cells contributes to autoimmune anaemia during malaria. Nat Commun. 2017;8:1282. doi:10.1038/s41467-017-01476-6 - PubMed
  189. Russell Knode LM, Naradikian MS, Myles A, et al. Age-associated B cells express a diverse repertoire of V(H) and Vκ genes with somatic hypermutation. J Immunol. 2017;198:1921-1927. doi:10.4049/jimmunol.1601106 - PubMed
  190. Wang Z, Wang Z, Wang J, et al. T-bet-expressing B cells are positively associated with Crohn's disease activity and support Th1 inflammation. DNA Cell Biol. 2016;35:628-635. doi:10.1089/dna.2016.3304 - PubMed
  191. McKenzie H, Main J, Pennington CR, Parratt D. Antibody to selected strains of Saccharomyces cerevisiae (baker's and brewer's yeast) and Candida albicans in Crohn's disease. Gut. 1990;31:536-538. doi:10.1136/gut.31.5.536 - PubMed
  192. Annese V, Andreoli A, Andriulli A, et al. Familial expression of anti-Saccharomyces cerevisiae Mannan antibodies in Crohn's disease and ulcerative colitis: a GISC study. Am J Gastroenterol. 2001;96:2407-2412. doi:10.1111/j.1572-0241.2001.04043.x - PubMed
  193. Doron I, Leonardi I, Li XV, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. 2021;184:1017-1031.e1014. doi:10.1016/j.cell.2021.01.016 - PubMed
  194. Drummond RA, Collar AL, Swamydas M, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015;11:e1005293. doi:10.1371/journal.ppat.1005293 - PubMed
  195. Doron I, Mesko M, Li XV, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nat Microbiol. 2021;6:1493-1504. doi:10.1038/s41564-021-00983-z - PubMed
  196. Ost KS, O’Meara TR, Stephens WZ, et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature. 2021;596:114-118. doi:10.1038/s41586-021-03722-w - PubMed
  197. Dambuza IM, Brown GD. Managing the mycobiota with IgA. Nat Microbiol. 2021;6:1471-1472. doi:10.1038/s41564-021-01006-7 - PubMed
  198. Fitzpatrick Z, Frazer G, Ferro A, et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature. 2020;587:472-476. doi:10.1038/s41586-020-2886-4 - PubMed
  199. Rojas OL, Pröbstel A-K, Porfilio EA, et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell. 2019;176:610-624.e618. doi:10.1016/j.cell.2018.11.035 - PubMed
  200. Pröbstel AK, Zhou X, Baumann R, et al. Gut microbiota-specific IgA(+) B cells traffic to the CNS in active multiple sclerosis. Sci Immunol. 2020;5. doi:10.1126/sciimmunol.abc7191 - PubMed
  201. Leonardi I, Li X, Semon A, et al. CX3CR1(+) mononuclear phagocytes control immunity to intestinal fungi. Science. 2018;359:232-236. doi:10.1126/science.aao1503 - PubMed
  202. Buckner CM, Moir S, Kardava L, et al. CXCR4/IgG-expressing plasma cells are associated with human gastrointestinal tissue inflammation. J Allergy Clin Immunol. 2014;133:1676-1685.e1675. doi:10.1016/j.jaci.2013.10.050 - PubMed
  203. Uo M, Hisamatsu T, Miyoshi J, et al. Mucosal CXCR4 + IgG plasma cells contribute to the pathogenesis of human ulcerative colitis through FcγR-mediated CD14 macrophage activation. Gut. 2013;62:1734-1744. doi:10.1136/gutjnl-2012-303063 - PubMed
  204. Lazarus NH, Kunkel EJ, Johnston B, et al. A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J Immunol. 2003;170:3799-3805. doi:10.4049/jimmunol.170.7.3799 - PubMed
  205. Hieshima K, Kawasaki Y, Hanamoto H, et al. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J Immunol. 2004;173:3668-3675. - PubMed
  206. Mora JR, von Andrian UH. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 2008;1:96-109. doi:10.1038/mi.2007.14 - PubMed
  207. Sundström P, Lundin SB, Nilsson LA, Quiding-Järbrink M. Human IgA-secreting cells induced by intestinal, but not systemic, immunization respond to CCL25 (TECK) and CCL28 (MEC). Eur J Immunol. 2008;38:3327-3338. doi:10.1002/eji.200838506 - PubMed
  208. Kunkel EJ, Kim CH, Lazarus NH, et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest. 2003;111:1001-1010. doi:10.1172/jci17244 - PubMed
  209. Johansson C, Ahlstedt I, Furubacka S, et al. Differential expression of chemokine receptors on human IgA+ and IgG+ B cells. Clin Exp Immunol. 2005;141:279-287. doi:10.1111/j.1365-2249.2005.02843.x - PubMed
  210. Schroepf S, Kappler R, Brand S, et al. Strong overexpression of CXCR3 axis components in childhood inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:1882-1890. doi:10.1002/ibd.21312 - PubMed
  211. Liu Z, Chen X, Wang X, et al. Chemokine CXCL11 links microbial stimuli to intestinal inflammation. Clin Exp Immunol. 2011;164:396-406. doi:10.1111/j.1365-2249.2011.04382.x - PubMed
  212. Price AE, Shamardani K, Lugo KA, et al. A map of toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity. 2018;49:560-575.e566. doi:10.1016/j.immuni.2018.07.016 - PubMed
  213. Koorella C, Nair JR, Murray ME, et al. Novel regulation of CD80/CD86-induced phosphatidylinositol 3-kinase signaling by NOTCH1 protein in interleukin-6 and indoleamine 2,3-dioxygenase production by dendritic cells. J Biol Chem. 2014;289:7747-7762. doi:10.1074/jbc.M113.519686 - PubMed

Publication Types

Grant support