Display options
Share it on

Genetics. 2021 Aug 26;219(1). doi: 10.1093/genetics/iyab104.

Societies to genes: can we get there from here?.

Genetics

Robert E Page

Affiliations

  1. School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
  2. Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA.

PMID: 34849914 PMCID: PMC8633090 DOI: 10.1093/genetics/iyab104

Abstract

Understanding the organization and evolution of social complexity is a major task because it requires building an understanding of mechanisms operating at different levels of biological organization from genes to social interactions. I discuss here, a unique forward genetic approach spanning more than 30 years beginning with human-assisted colony-level selection for a single social trait, the amount of pollen honey bees (Apis mellifera L.) store. The goal was to understand a complex social trait from the social phenotype to genes responsible for observed trait variation. The approach combined the results of colony-level selection with detailed studies of individual behavior and physiology resulting in a mapped, integrated phenotypic architecture composed of correlative relationships between traits spanning anatomy, physiology, sensory response systems, and individual behavior that affect individual foraging decisions. Colony-level selection reverse engineered the architecture of an integrated phenotype of individuals resulting in changes in the social trait. Quantitative trait locus (QTL) studies combined with an exceptionally high recombination rate (60 kb/cM), and a phenotypic map, provided a genotype-phenotype map of high complexity demonstrating broad QTL pleiotropy, epistasis, and epistatic pleiotropy suggesting that gene pleiotropy or tight linkage of genes within QTL integrated the phenotype. Gene expression and knockdown of identified positional candidates revealed genes affecting foraging behavior and confirmed one pleiotropic gene, a tyramine receptor, as a target for colony-level selection that was under selection in two different tissues in two different life stages. The approach presented here has resulted in a comprehensive understanding of the structure and evolution of honey bee social organization.

© The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America.

Keywords: behavior genetics; epistasis; epistatic pleiotropy; forward genetics; genotype–phenotype architecture; honey bee social behavior; pleiotropy; pollen hoarding; quantitative trait locus

References

  1. Ecol Evol. 2012 Dec;2(12):3098-109 - PubMed
  2. J Hered. 2004 Nov-Dec;95(6):481-91 - PubMed
  3. Am Nat. 2009 Mar;173(3):E99-E107 - PubMed
  4. BMC Evol Biol. 2011 Apr 13;11:95 - PubMed
  5. Sci Rep. 2018 Nov 8;8(1):16534 - PubMed
  6. Genetics. 2004 Aug;167(4):1767-79 - PubMed
  7. Integr Comp Biol. 2012 Jul;52(1):64-76 - PubMed
  8. J Insect Physiol. 2006 Oct;52(10):1083-92 - PubMed
  9. Genome Biol. 2007;8(4):R66 - PubMed
  10. Bioessays. 2005 Oct;27(10):999-1010 - PubMed
  11. J Hered. 2015 Mar-Apr;106(2):155-65 - PubMed
  12. Genetics. 2009 Oct;183(2):693-707, 1SI-13SI - PubMed
  13. J Neuroendocrinol. 2004 Aug;16(8):649-59 - PubMed
  14. J Exp Biol. 2003 Jul;206(Pt 14):2507-15 - PubMed
  15. Nature. 2006 Jan 5;439(7072):76-8 - PubMed
  16. J Insect Physiol. 1998 May;44(5-6):385-391 - PubMed
  17. Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):9003-8 - PubMed
  18. Evol Dev. 2010 Sep-Oct;12(5):428-36 - PubMed
  19. Anim Behav. 2010 May 1;79(5):1001-1006 - PubMed
  20. Genetics. 1995 Mar;139(3):1371-82 - PubMed
  21. J Exp Biol. 2012 Jan 1;215(Pt 1):124-34 - PubMed
  22. J Theor Biol. 2003 Aug 21;223(4):451-64 - PubMed
  23. PLoS One. 2009;4(4):e4899 - PubMed
  24. Genetics. 1995 Dec;141(4):1537-45 - PubMed
  25. Genome Res. 2006 Nov;16(11):1339-44 - PubMed
  26. BMC Genomics. 2014 Jan 30;15:86 - PubMed
  27. Zoolog Sci. 2016 Oct;33(5):505-512 - PubMed
  28. Am Nat. 2007 Jul;170(1):37-46 - PubMed
  29. J Insect Physiol. 2020 Oct;126:104093 - PubMed
  30. PLoS Biol. 2019 Mar 21;17(3):e3000171 - PubMed
  31. Heredity (Edinb). 2011 May;106(5):894-903 - PubMed
  32. Curr Top Dev Biol. 2016;119:157-204 - PubMed
  33. Nature. 2006 Oct 26;443(7114):931-49 - PubMed
  34. Genetics. 2006 Jan;172(1):243-51 - PubMed
  35. PLoS Genet. 2010 Apr 01;6(4):e1000896 - PubMed
  36. J Exp Biol. 2006 Jul;209(Pt 14):2774-84 - PubMed
  37. Naturwissenschaften. 2008 Oct;95(10):953-61 - PubMed
  38. Science. 2001 Apr 6;292(5514):107-10 - PubMed
  39. Annu Rev Genet. 2012;46:97-119 - PubMed
  40. BMC Biotechnol. 2003 Jan 20;3:1 - PubMed
  41. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1801-10 - PubMed
  42. J Insect Physiol. 2005 Apr;51(4):455-64 - PubMed
  43. FEBS Lett. 2005 Sep 12;579(22):4961-5 - PubMed
  44. J Exp Biol. 2012 Apr 1;215(Pt 7):1076-83 - PubMed
  45. Q Rev Biol. 2005 Sep;80(3):317-36 - PubMed
  46. Science. 2003 Feb 28;299(5611):1346-51 - PubMed
  47. Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11350-5 - PubMed
  48. J Hered. 2000 Nov-Dec;91(6):474-9 - PubMed
  49. Behav Brain Res. 2002 Nov 15;136(2):545-53 - PubMed
  50. Naturwissenschaften. 2012 Feb;99(2):123-31 - PubMed
  51. Genetics. 2008 Sep;180(1):567-82 - PubMed
  52. J Exp Biol. 2011 Dec 1;214(Pt 23):3977-84 - PubMed
  53. Naturwissenschaften. 2007 Apr;94(4):247-67 - PubMed
  54. Genetics. 2006 May;173(1):197-205 - PubMed
  55. J Insect Physiol. 2002 Aug;48(8):783-790 - PubMed
  56. PLoS Biol. 2007 Mar;5(3):e62 - PubMed
  57. Chem Senses. 2020 Nov 7;45(8):655-666 - PubMed
  58. Nat Rev Genet. 2011 Mar;12(3):204-13 - PubMed
  59. Behav Genet. 2009 Sep;39(5):541-53 - PubMed
  60. Cell. 2003 Aug 22;114(4):419-29 - PubMed

Publication Types