Display options
Share it on

Sci Rep. 2022 Jan 07;12(1):8. doi: 10.1038/s41598-021-03795-7.

Decrease of Pdzrn3 is required for heart maturation and protects against heart failure.

Scientific reports

Mathieu Pernot, Béatrice Jaspard-Vinassa, Alice Abelanet, Sebastien Rubin, Isabelle Forfar, Sylvie Jeanningros, Laura Cetran, Murielle Han-Yee Yu, Elise Balse, Stéphane Hatem, Pascale Dufourcq, Thierry Couffinhal, Cécile Duplàa

Affiliations

  1. Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France.
  2. Faculté de Médecine, Université Pierre et Marie Curie, Sorbonne University, INSERM UMR_S1166, Paris, France.
  3. Service de Biochimie Clinique, CHU de Bordeaux, Bordeaux, France.
  4. Service des Maladies Cardiaques et Vasculaires, CHU de Bordeaux, Bordeaux, France.
  5. Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, 1 Avenue de Magellan, 33600, Pessac, France. [email protected].

PMID: 34996942 PMCID: PMC8742099 DOI: 10.1038/s41598-021-03795-7

Abstract

Heart failure is the final common stage of most cardiopathies. Cardiomyocytes (CM) connect with others via their extremities by intercalated disk protein complexes. This planar and directional organization of myocytes is crucial for mechanical coupling and anisotropic conduction of the electric signal in the heart. One of the hallmarks of heart failure is alterations in the contact sites between CM. Yet no factor on its own is known to coordinate CM polarized organization. We have previously shown that PDZRN3, an ubiquitine ligase E3 expressed in various tissues including the heart, mediates a branch of the Planar cell polarity (PCP) signaling involved in tissue patterning, instructing cell polarity and cell polar organization within a tissue. PDZRN3 is expressed in the embryonic mouse heart then its expression dropped significantly postnatally corresponding with heart maturation and CM polarized elongation. A moderate CM overexpression of Pdzrn3 (Pdzrn3 OE) during the first week of life, induced a severe eccentric hypertrophic phenotype with heart failure. In models of pressure-overload stress heart failure, CM-specific Pdzrn3 knockout showed complete protection against degradation of heart function. We reported that Pdzrn3 signaling induced PKC ζ expression, c-Jun nuclear translocation and a reduced nuclear ß catenin level, consistent markers of the planar non-canonical Wnt signaling in CM. We then show that subcellular localization (intercalated disk) of junction proteins as Cx43, ZO1 and Desmoglein 2 was altered in Pdzrn3 OE mice, which provides a molecular explanation for impaired CM polarization in these mice. Our results reveal a novel signaling pathway that controls a genetic program essential for heart maturation and maintenance of overall geometry, as well as the contractile function of CM, and implicates PDZRN3 as a potential therapeutic target for the prevention of human heart failure.

© 2022. The Author(s).

References

  1. Circulation. 2004 Mar 2;109(8):1048-55 - PubMed
  2. Stem Cell Res. 2014 Nov;13(3 Pt B):556-70 - PubMed
  3. Nat Commun. 2014 Sep 08;5:4832 - PubMed
  4. Circulation. 2006 Apr 11;113(14):1807-16 - PubMed
  5. Circ Res. 2007 Jul 20;101(2):137-45 - PubMed
  6. Eur J Cell Biol. 2002 Nov;81(11):592-8 - PubMed
  7. J Biol Chem. 1998 May 22;273(21):12725-31 - PubMed
  8. J Cell Sci. 2003 Mar 1;116(Pt 5):875-85 - PubMed
  9. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4610-5 - PubMed
  10. Trends Pharmacol Sci. 2008 Apr;29(4):175-80 - PubMed
  11. J Cell Mol Med. 2007 Jul-Aug;11(4):892-5 - PubMed
  12. ACS Chem Neurosci. 2013 Jul 17;4(7):1071-80 - PubMed
  13. Circ Res. 2004 Nov 12;95(10):1035-41 - PubMed
  14. J Am Heart Assoc. 2014 Oct 14;3(5):e001271 - PubMed
  15. Physiol Rev. 2012 Jul;92(3):1317-58 - PubMed
  16. Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):E1345-E1354 - PubMed
  17. Heart Rhythm. 2012 May;9(5):812-20 - PubMed
  18. Cardiovasc Pathol. 2007 May-Jun;16(3):159-64 - PubMed
  19. Development. 2013 Jan 15;140(2):395-404 - PubMed
  20. Mol Cell Biol. 2011 Jan;31(1):163-78 - PubMed
  21. Exp Cell Res. 1997 Nov 1;236(2):482-92 - PubMed
  22. J Clin Invest. 2002 Apr;109(7):849-55 - PubMed
  23. Hypertension. 2010 Apr;55(4):939-45 - PubMed
  24. Cardiovasc Res. 2011 Oct 1;92(1):95-105 - PubMed
  25. Stem Cell Reports. 2016 Oct 11;7(4):764-776 - PubMed
  26. Nat Rev Mol Cell Biol. 2006 Aug;7(8):589-600 - PubMed
  27. Circ Res. 2002 Feb 22;90(3):317-24 - PubMed
  28. Circ Res. 2001 Jul 6;89(1):20-5 - PubMed
  29. Nat Commun. 2018 Oct 30;9(1):4435 - PubMed
  30. J Mol Cell Cardiol. 2019 Apr;129:303-313 - PubMed
  31. Heart. 1996 Nov;76(5):412-7 - PubMed
  32. Cardiovasc Res. 2008 Oct 1;80(1):9-19 - PubMed
  33. Basic Res Cardiol. 2011 Jun;106(4):617-33 - PubMed
  34. Cardiovasc Res. 2008 Mar 1;77(4):757-65 - PubMed
  35. J Cell Biol. 2001 May 14;153(4):763-72 - PubMed
  36. Circ Res. 2001 Jul 6;89(1):6-12 - PubMed
  37. Nature. 2002 Aug 8;418(6898):636-41 - PubMed
  38. J Mol Cell Cardiol. 2007 Sep;43(3):319-26 - PubMed
  39. J Cell Sci. 2002 Apr 15;115(Pt 8):1623-34 - PubMed
  40. Circ Res. 2010 Jul 23;107(2):186-99 - PubMed
  41. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10779-84 - PubMed
  42. Cardiovasc Res. 2014 Nov 1;104(2):245-57 - PubMed
  43. Heart Rhythm. 2009 Aug;6(8 Suppl):S62-5 - PubMed
  44. Cardiovasc Res. 2010 Jan 1;85(1):100-9 - PubMed
  45. Annu Rev Cell Dev Biol. 2015;31:623-46 - PubMed
  46. J Clin Invest. 2010 Jan;120(1):266-79 - PubMed
  47. Nat Cell Biol. 2007 Oct;9(10):1110-21 - PubMed
  48. J Cell Biol. 2011 Dec 26;195(7):1185-203 - PubMed
  49. J Biol Chem. 2004 Apr 9;279(15):15330-8 - PubMed
  50. Circ Res. 2001 Feb 16;88(3):333-9 - PubMed
  51. Sci Signal. 2017 Jan 31;10(464): - PubMed

Publication Types

Grant support