Display options
Share it on

World J Microbiol Biotechnol. 2022 Jan 12;38(3):40. doi: 10.1007/s11274-022-03228-1.

Biosynthesis of vanillin by different microorganisms: a review.

World journal of microbiology & biotechnology

Qianqian Ma, Liwen Liu, Shuo Zhao, Zhaosong Huang, Changtao Li, Shuixing Jiang, Qiang Li, Pengfei Gu

Affiliations

  1. School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
  2. RZBC GROUP CO., LTD., Rizhao, 276800, Shandong, People's Republic of China.
  3. School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China. [email protected].

PMID: 35018518 DOI: 10.1007/s11274-022-03228-1

Abstract

Vanillin is a popular flavoring agent widely used around the world. Vanillin is generated by natural extraction, chemical synthesis, or tissue culture technology, but these production methods no longer meet the increasing worldwide demand for vanillin. Accordingly, a biotechnological approach may provide an effective replacement route to obtaining vanillin. Processes for environmentally friendly production of vanillin in microorganisms from different carbon sources, such as eugenol, isoeugenol, lignin, ferulic acid, sugars, and waste residues, with high productivity and yield have been developed. However, challenges remain for optimizing the vanillin biosynthesis process and further improving production titer and yield. In this review, successful and applicable strategies for increasing vanillin titer and yield in different microorganisms are summarized. Additionally, perspectives for further optimizing the production of vanillin are discussed.

© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

Keywords: Fermentation; Genetic engineering; Metabolic engineering; Vanillin

References

  1. Ashengroph M, Amini J (2017) Bioconversion of isoeugenol to vanillin and vanillic acid using the resting cells of Trichosporon asahii. 3 Biotech 7:358. https://doi.org/10.1007/s13205-017-0998-9 - PubMed
  2. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2011) Pseudomonas resinovorans SPR1, a newly isolated strain with potential of transforming eugenol to vanillin and vanillic acid. N Biotechnol 28:656–664. https://doi.org/10.1016/j.nbt.2011.06.009 - PubMed
  3. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2012) Conversion of isoeugenol to vanillin by Psychrobacter sp. strain CSW4. Appl Biochem Biotechnol 166:1–12. https://doi.org/10.1007/s12010-011-9397-6 - PubMed
  4. Ashengropha M, Nahvia I, Zarkesh-Esfahania H, Momenbeikc F (2011) Use of growing cells of Pseudomonas aeruginosa for synthesis of the natural vanillin via conversion of isoeugenol. Iran J Pharm Res 10:749–757. https://doi.org/10.3923/ijp.2011.144.148 - PubMed
  5. Brochado AR, Matos C, Moller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Factories 9:84. https://doi.org/10.1186/1475-2859-9-84 - PubMed
  6. Chen C et al (2016a) Global transcriptomic analysis of the response of Corynebacterium glutamicum to vanillin. PLoS ONE 11:e0164955. https://doi.org/10.1371/journal.pone.0164955 - PubMed
  7. Chen P et al (2016b) A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid. Sci Rep 6:20400. https://doi.org/10.1038/srep20400 - PubMed
  8. D’Ambrosio V et al (2020) Regulatory control circuits for stabilizing long-term anabolic product formation in yeast. Metab Eng 61:369–380. https://doi.org/10.1016/j.ymben.2020.07.006 - PubMed
  9. Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M (2011) Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol 156:309–316. https://doi.org/10.1016/j.jbiotec.2011.08.014 - PubMed
  10. Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J (2008) Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels 1:3. https://doi.org/10.1186/1754-6834-1-3 - PubMed
  11. Fleige C, Meyer F, Steinbuchel A (2016) Metabolic engineering of the actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl Environ Microbiol 82:3410–3419. https://doi.org/10.1128/AEM.00802-16 - PubMed
  12. Furukawa H, Zenno S, Iwasawa Y, Morita H, Yoshida T, Nagasawa T (2003) Ferulic acid production from clove oil by Pseudomonas fluorescens E118. J Biosci Bioeng 96:404–405. https://doi.org/10.1016/S1389-1723(03)90146-0 - PubMed
  13. Graf N, Altenbuchner J (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl Microbiol Biotechnol 98:137–149. https://doi.org/10.1007/s00253-013-5303-1 - PubMed
  14. Graf N, Wenzel M, Altenbuchner J (2016) Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA. Appl Microbiol Biotechnol 100:3511–3521. https://doi.org/10.1007/s00253-015-7197-6 - PubMed
  15. Hansen EH et al (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765–2774. https://doi.org/10.1128/AEM.02681-08 - PubMed
  16. Hua D, Ma C, Song L, Lin S, Zhang Z, Deng Z, Xu P (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74:783–790. https://doi.org/10.1007/s00253-006-0735-5 - PubMed
  17. Ishida Y, Nguyen TT, Kitajima S, Izawa S (2016) Prioritized expression of BDH2 under bulk translational repression and its contribution to tolerance to severe vanillin stress in Saccharomyces cerevisiae. Front Microbiol 7:1059. https://doi.org/10.3389/fmicb.2016.01059 - PubMed
  18. Ishida Y, Nguyen TTM, Izawa S (2017) The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural. J Biotechnol 252:65–72. https://doi.org/10.1016/j.jbiotec.2017.04.024 - PubMed
  19. Kasana RC, Sharma UK, Sharma N, Sinha AK (2007) Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr Microbiol 54:457–461. https://doi.org/10.1007/s00284-006-0627-z - PubMed
  20. Kaur B, Chakraborty D (2013) Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol 169:1353–1372. https://doi.org/10.1007/s12010-012-0066-1 - PubMed
  21. Kaur B, Chakraborty D, Kumar B (2014) Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology. Appl Microbiol Biotechnol 98:8539–8551. https://doi.org/10.1007/s00253-014-5950-x - PubMed
  22. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep (Amst) 4:86–93. https://doi.org/10.1016/j.btre.2014.09.002 - PubMed
  23. Kunjapur AM, Prather KLJ (2019) Development of a vanillate biosensor for the vanillin biosynthesis pathway in E. coli. ACS Synth Biol 8:1958–1967. https://doi.org/10.1021/acssynbio.9b00071 - PubMed
  24. Kunjapur AM, Tarasova Y, Prather KL (2014) Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J Am Chem Soc 136:11644–11654. https://doi.org/10.1021/ja506664a - PubMed
  25. Kunjapur AM, Hyun JC, Prather KL (2016) Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway. Microb Cell Factories 15:61. https://doi.org/10.1186/s12934-016-0459-x - PubMed
  26. Lee EG et al (2009) Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli. Biotechnol Bioeng 102:200–208. https://doi.org/10.1002/bit.22040 - PubMed
  27. Li K, Frost JW (1998) Synthesis of vanillin from glucose. J Am Chem Soc 120:10545–10546. https://doi.org/10.1021/ja9817747 - PubMed
  28. Li X, Yang J, Xian L, Wen G, Huang J, Zhang KQ (2008) The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by Enterobacter sp. Px6-4 isolated from Vanilla root. Process Biochem 43:1132–1137. https://doi.org/10.1016/j.procbio.2008.06.006 - PubMed
  29. Liang Z, Wang X, Bao X, Wei T, Hou J, Liu W, Shen Y (2021) Newly identified genes contribute to vanillin tolerance in Saccharomyces cerevisiae. Microb Biotechnol 14:503–516. https://doi.org/10.1111/1751-7915.13643 - PubMed
  30. Lirdprapamongkol K, Kramb JP, Suthiphongchai T, Surarit R, Srisomsap C, Dannhardt G, Svasti J (2009) Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J Agric Food Chem 57:3055–3063. https://doi.org/10.1021/jf803366f - PubMed
  31. Luziatelli F, Brunetti L, Ficca AG, Ruzzi M (2019) Maximizing the efficiency of vanillin production by biocatalyst enhancement and process optimization. Front Bioeng Biotechnol 7:279. https://doi.org/10.3389/fbioe.2019.00279 - PubMed
  32. Ma XK, Daugulis AJ (2014) Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation. Bioprocess Biosyst Eng 37:891–899. https://doi.org/10.1007/s00449-013-1060-x - PubMed
  33. Mishra S, Sachan A, Sachan SG (2013) Production of natural value-added compounds: an insight into the eugenol biotransformation pathway. J Ind Microbiol Biotechnol 40:545–550. https://doi.org/10.1007/s10295-013-1255-9 - PubMed
  34. Nguyen TT, Kitajima S, Izawa S (2014) Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae. J Biosci Bioeng 118:263–269. https://doi.org/10.1016/j.jbiosc.2014.02.025 - PubMed
  35. Ni J, Tao F, Du H, Xu P (2015) Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Sci Rep 5:13670. https://doi.org/10.1038/srep13670 - PubMed
  36. Overhage J, Steinbuchel A, Priefert H (2003) Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Appl Environ Microbiol 69:6569–6576. https://doi.org/10.1128/AEM.69.11.6569-6576.2003 - PubMed
  37. Pattrick CA, Webb JP, Green J, Chaudhuri RR, Collins MO, Kelly DJ (2019) Proteomic profiling, transcription factor modeling, and genomics of evolved tolerant strains elucidate mechanisms of vanillin toxicity in Escherichia coli. mSystems 4:4. https://doi.org/10.1128/mSystems.00163-19 - PubMed
  38. Paz A, Outeirino D, de Souza P, Oliveira R, Dominguez JM (2018) Fed-batch production of vanillin by Bacillus aryabhattai BA03. N Biotechnol 40:186–191. https://doi.org/10.1016/j.nbt.2017.07.012 - PubMed
  39. Plaggenborg R et al (2006) Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72:745–755. https://doi.org/10.1007/s00253-005-0302-5 - PubMed
  40. Priefert H, Rabenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. https://doi.org/10.1007/s002530100687 - PubMed
  41. Rao SR, Ravishankar GA (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304. https://doi.org/10.1002/1097-0010(200002)80:3%3c289::aid-jsfa543%3e3.0.co;2-2 - PubMed
  42. Rejani CT, Radhakrishnan S (2020) Microbial conversion of vanillin from ferulic acid extracted from raw coir pith. Nat Prod Res. https://doi.org/10.1080/14786419.2020.1849194 - PubMed
  43. Ryu JY, Seo J, Ahn JH, Sadowsky MJ, Hur HG (2012) Transcriptional control of the isoeugenol monooxygenase of Pseudomonas nitroreducens Jin1 in Escherichia coli. Biosci Biotechnol Biochem 76:1891–1896. https://doi.org/10.1271/bbb.120375 - PubMed
  44. Shen Y et al (2014) High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol 41:1637–1645. https://doi.org/10.1007/s10295-014-1515-3 - PubMed
  45. Shimoni E, Ravid U, Shoham Y (2000) Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. J Biotechnol 78:1–9. https://doi.org/10.1016/s0168-1656(99)00199-6 - PubMed
  46. Tilay A, Bule M, Annapure U (2010) Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinnabarinus. J Agric Food Chem 58:4401–4405. https://doi.org/10.1021/jf904141u - PubMed
  47. Valerio R, Bernardino ARS, Torres CAV, Brazinha C, Tavares ML, Crespo JG, Reis MAM (2021) Feeding strategies to optimize vanillin production by Amycolatopsis sp. ATCC 39116. Bioprocess Biosyst Eng 44:737–747. https://doi.org/10.1007/s00449-020-02482-7 - PubMed
  48. Vyrides I, Agathangelou M, Dimitriou R, Souroullas K, Koutinas MJ (2015) Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in Cyprus that generates vanillin and vanillic acid from ferulic acid. World J Microbiol Biotechnol 31:1291–1296. https://doi.org/10.1007/s11274-015-1876-4 - PubMed
  49. Wang FS, Zhao LQ, Sun ZH (2005) Study on simultaneous reaction and separation of vanillin prepared from isoeugenol by enzymatic conversion. Chin J Process Eng 5(3):273–276. https://doi.org/10.1360/crad20050909 - PubMed
  50. Wang X, Liang Z, Hou J, Bao X, Shen Y (2016) Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance. BMC Biotechnol 16:31. https://doi.org/10.1186/s12896-016-0264-y - PubMed
  51. Wang X, Liang Z, Hou J, Shen Y, Bao X (2017) The Absence of the transcription factor Yrr1p, identified from comparative genome profiling, increased vanillin tolerance due to enhancements of ABC transporters expressing, rRNA processing and ribosome biogenesis in Saccharomyces cerevisiae. Front Microbiol 8:367. https://doi.org/10.3389/fmicb.2017.00367 - PubMed
  52. Yamada M, Okada Y, Yoshida T, Nagasawa T (2007) Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol 73:1025–1030. https://doi.org/10.1007/s00253-006-0569-1 - PubMed
  53. Yamada M, Okada Y, Yoshida T, Nagasawa T (2008) Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida. Biotechnol Lett 30:665–670. https://doi.org/10.1007/s10529-007-9602-4 - PubMed
  54. Yoon SH et al (2005) Production of vanillin by metabolically engineered Escherichia coli. Biotechnol Lett 27:1829–1832. https://doi.org/10.1007/s10529-005-3561-4 - PubMed
  55. Yoon SH et al (2007) Enhanced vanillin production from recombinant E. coli using NTG mutagenesis and adsorbent resin. Biotechnol Prog 23:1143–1148. https://doi.org/10.1021/bp070153r - PubMed
  56. Zamzuri NA, Abd-Aziz S (2013) Biovanillin from agro wastes as an alternative food flavour. J Sci Food Agric 93:429–438. https://doi.org/10.1002/jsfa.5962 - PubMed

Publication Types

Grant support