Display options
Share it on

J Biomed Mater Res B Appl Biomater. 2022 Jan 12; doi: 10.1002/jbm.b.35006. Epub 2022 Jan 12.

Design and evaluation of nanostructured lipid carriers loaded with Salvia officinalis extract for Alzheimer's disease treatment.

Journal of biomedical materials research. Part B, Applied biomaterials

Elena Markova, Lea Taneska, Monika Kostovska, Dushko Shalabalija, Ljubica Mihailova, Marija Glavas Dodov, Petre Makreski, Nikola Geskovski, Marija Petrushevska, Arben N Taravari, Maja Simonoska Crcarevska

Affiliations

  1. Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia.
  2. Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia.
  3. Institute of Pharmacology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia.
  4. University Clinic for Neurology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia.

PMID: 35019231 DOI: 10.1002/jbm.b.35006

Abstract

Considering the potential of Salvia officinalis in prevention and treatment of Alzheimer's disease (AD), as well as the ability of nanostructured lipid carriers (NLC) to successfully deliver drug molecules across blood-brain barrier (BBB), the objective of this study was design, development, optimization and characterization of freeze-dried salvia officinalis extract (FSE) loaded NLC intended for intranasal administration. NLC were prepared by solvent evaporation method and the optimization was carried out using central composite design (CCD) of experiments. Further, the optimized formulation (NLCo) was coated either with chitosan (NLCc) or poloxamer (NLCp). Surface characterization of the particles demonstrated a spherical shape with smooth exterior. Particle size of optimal formulations after 0.45 μm pore size filtration ranged from 127 ± 0.68 nm to 140 ± 0.74 nm. The zeta potential was -25.6 ± 0.404 mV; 22.4 ± 1.106 mV and - 6.74 ± 0.609 mV for NLCo, NLCc, and NLCp, respectively. Differential scanning calorimetry (DSC) confirmed the formation of NLC whereas Fourier-transform infrared spectroscopy confirmed the FSE encapsulation into particles. All formulations showcased relatively high drug loading (>86.74 mcg FSE/mg solid lipid) and were characterized by prolonged and controlled release that followed Peppas-Sahlin in vitro release kinetic model. Protein adsorption studies revealed the lowest adsorption of the proteins onto NLCp (43.53 ± 0.07%) and highest protein adsorption onto NLCc (55.97 ± 0.75%) surface. The modified ORAC assay demonstrated higher antioxidative activity for NLCo (95.31 ± 1.86%) and NLCc (97.76 ± 4.00%) as compared to FSE (90.30 ± 1.53%). Results obtained from cell cultures tests pointed to the potential of prepared NLCs for FSE brain targeting and controlled release.

© 2022 Wiley Periodicals LLC.

Keywords: Alzheimer’s disease; Salvia officinalis; experimental design; in vitro characterization; nanostructured lipid carriers; optimization

References

  1. Ferrero J, Williams L, Stella H, et al. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimer’s Dementia: Trans Res Clinic Interventions. 2016;2:169-176. doi:10.1016/j.trci.2016.06.002 - PubMed
  2. Selkoe DJ. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008;192:106-113. doi:10.1016/j.bbr.2008.02.016 - PubMed
  3. Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer’s Res Therapy. 2014;6:37. doi:10.1186/alzrt269 - PubMed
  4. Lanctôt KL, Rajaram RD, Herrmann N. Therapy for Alzheimer’s disease: how effective are current treatments? Ther Adv Neurol Disord. 2009;2:163-180. doi:10.1177/1756285609102724 - PubMed
  5. Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther. 2003;28:53-59. doi:10.1046/j.1365-2710.2003.00463.x - PubMed
  6. Wake G, Court J, Pickering A, Lewis R, Wilkins R, Perry E. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J Ethnopharmacol. 2000;69:105-114. doi:10.1016/S0378-8741(99)00113-0 - PubMed
  7. Schulz, V., Hänsel, R., Tyler, V.E., 2001. Rational Phytotherapy. Springer Berlin Heidelberg 10.1007/978-3-642-98093-0 - PubMed
  8. Hohmann J, Zupkó I, Rédei D, et al. Protective Effects of the Aerial Parts of Salvia officinalis, Melissa officinalis and Lavandula angustifolia and their Constituents against Enzyme-Dependent and Enzyme-Independent Lipid Peroxidation. Planta Med. 1999;65:576-578. doi:10.1055/s-2006-960830 - PubMed
  9. Nunes S, Madureira R, Campos D, et al. Therapeutic and Nutraceutical Potential of Rosmarinic Acid - Cytoprotective Properties and Pharmacokinetic Profile. Crit Rev Food Sci Nutr. 2015;57:1799-1806. doi:10.1080/10408398.2015.1006768 - PubMed
  10. Obulesu M, Rao DM. Effect of plant extracts on Alzheimer’s disease: An insight into therapeutic avenues. J Neurosci Rural Prac. 2011;02:56-61. doi:10.4103/0976-3147.80102 - PubMed
  11. Ozarowski M, Mikolajczak PL, Bogacz A, et al. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia. 2013;91:261-271. doi:10.1016/j.fitote.2013.09.012 - PubMed
  12. Mignet N, Seguin J, Chabot G. Bioavailability of Polyphenol Liposomes: A Challenge Ahead. Pharmaceutics. 2013;5:457-471. doi:10.3390/pharmaceutics5030457 - PubMed
  13. Gänger S, Schindowski K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics. 2018;10:116. doi:10.3390/pharmaceutics10030116 - PubMed
  14. Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018;128:337-362. doi:10.1016/j.ejpb.2018.05.009 - PubMed
  15. Cortés H, Alcalá-Alcalá S, Caballero-Florán IH, et al. A Reevaluation of Chitosan-Decorated Nanoparticles to Cross the Blood-Brain Barrier. Membranes. 2020;10:212. doi:10.3390/membranes10090212 - PubMed
  16. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle Technology for Drug Delivery Across the Blood-Brain Barrier. Drug Dev Ind Pharm. 2002;28:1-13. doi:10.1081/DDC-120001481 - PubMed
  17. Moraru C, Mincea M, Menghiu G, Ostafe V. Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications. Molecules. 2020;25:4758. doi:10.3390/molecules25204758 - PubMed
  18. Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today. 2020;25:185-194. doi:10.1016/j.drudis.2019.10.005 - PubMed
  19. Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm. 2009;71:161-172. doi:10.1016/j.ejpb.2008.09.003 - PubMed
  20. Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242:121-128. doi:10.1016/S0378-5173(02)00180-1 - PubMed
  21. Devkar TB, Tekade AR, Khandelwal KR. Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer. Colloids Surf B Biointerfaces. 2014;122:143-150. doi:10.1016/j.colsurfb.2014.06.037 - PubMed
  22. Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv. 2016;23:1326-1334. doi:10.3109/10717544.2014.975382 - PubMed
  23. Kostovska, M., Markova, E., Taneska, L., Shalabalija, D., Mihailova, L., Glavas Dodov, M., Vranic, E., Simonoska Crcarevska, M., 2018. Nanostructured lipid carriers for Alzheimer’s disease treatment: Influence of solid/liquid lipid ratio on physico-chemical properties, in: Central European Symposium on Pharmaceutical Technology and Regulatory Affairs and Satellite Symposium on Pharmaceutical Biotechology, Szeged, Hungary. - PubMed
  24. Taneska, L., Kostovska, Monika Markova, E., Cambuleva, L., Shalabalija, D., Glavas Dodov, Marija Cvetkovikj Karanfilova, I., Petrushevska, M., Stefkov, G., Slaveska Raicki, R., Simonoska Crcarevska, Maja., 2018. Nanostructured lipid carriers loaded with Salvia off. extract for intranasal delivery, in: 11th World Meetingon Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Granada, Spain. Granada - PubMed
  25. Markova, E., Kostovska, M., Taneska, L., Shalabalija, D., Cambuleva, L., Glavas Dodov, M., Simonoska Crcarevska, M., 2018. Protein binding capacity of nanostructured lipid carriers loaded with Salvia off. extract, in: Nanomedicine, Rome, Italy. - PubMed
  26. Mihailova, L., Kostovska, M., Markova, E., Taneska, L., Shalabalija, D., Glavas Dodov, M., Vranic, E., Simonoska Crcarevska, M., 2018. Determination of physico-chemical properties of Salvia off. loaded nanostructured lipid carriers, in: VII Serbian Congress of Pharmacy with International Participation, Belgrade, Serbia - PubMed
  27. Cvetkovikj I, Stefkov G, Acevska J, et al. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe. J Chromatogr A. 2013;1282:38-45. doi:10.1016/j.chroma.2012.12.068 - PubMed
  28. Zhang W, Li X, Ye T, et al. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology. Int J Pharm. 2013;454:354-366. doi:10.1016/j.ijpharm.2013.07.032 - PubMed
  29. Dimchevska S, Geskovski N, Koliqi R, et al. Efficacy assessment of self-assembled PLGA-PEG-PLGA nanoparticles: Correlation of nano-bio interface interactions, biodistribution, internalization and gene expression studies. Int J Pharm. 2017;533:389-401. doi:10.1016/j.ijpharm.2017.05.054 - PubMed
  30. Geskovski N, Kuzmanovska S, Simonoska Crcarevska M, et al. Comparative biodistribution studies of technetium-99 m radiolabeled amphiphilic nanoparticles using three different reducing agents during the labeling procedure. J Label Compd Radiopharm. 2013;56:689-695. doi:10.1002/jlcr.3097 - PubMed
  31. Ranaldi S, Belle V, Woudstra M, et al. Lid Opening and Unfolding in Human Pancreatic Lipase at Low pH Revealed by Site-Directed Spin Labeling EPR and FTIR Spectroscopy. Biochemistry. 2009;48:630-638. doi:10.1021/bi801250s - PubMed
  32. Martins N, Barros L, Santos-Buelga C, Henriques M, Silva S, Ferreira ICFR. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2015;170:378-385. doi:10.1016/j.foodchem.2014.08.096 - PubMed
  33. Grzegorczyk I, Matkowski A, Wysokińska H. Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem. 2007;104:536-541. doi:10.1016/j.foodchem.2006.12.003 - PubMed
  34. Danaei M, Dehghankhold M, Ataei S, et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018;10:57. doi:10.3390/pharmaceutics10020057 - PubMed
  35. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673-692. doi:10.2217/nnm.16.5 - PubMed
  36. Haque S, Md S, Alam MI, Sahni JK, Ali J, Baboota S. Nanostructure-based drug delivery systems for brain targeting. Drug Dev Ind Pharm. 2012;38:387-411. doi:10.3109/03639045.2011.608191 - PubMed
  37. Wavikar PR, Vavia PR. Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery. J Liposome Res. 2015;25:141-149. doi:10.3109/08982104.2014.954129 - PubMed
  38. Jain K, Sood S, Gowthamarajan K. Optimization of artemether-loaded NLC for intranasal delivery using central composite design. Drug Deliv. 2015;22:940-954. doi:10.3109/10717544.2014.885999 - PubMed
  39. Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target. 2012;20:813-830. doi:10.3109/1061186X.2012.716845 - PubMed
  40. Mukherjee S, Ray S, Thakur R. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71:349-358. doi:10.4103/0250-474X.57282 - PubMed
  41. Freire MC, Alexandrino F, Marcelino HR, et al. Understanding drug release data through thermodynamic analysis. Materials. 2017;10:651. doi:10.3390/ma10060651 - PubMed
  42. Espinoza LC, Silva-Abreu M, Clares B, et al. Formulation Strategies to Improve Nose-to-Brain Delivery of Donepezil. Pharmaceutics. 2019;11:64. doi:10.3390/pharmaceutics11020064 - PubMed
  43. Göppert TM, Müller RH. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm. 2005;302:172-186. doi:10.1016/j.ijpharm.2005.06.025 - PubMed
  44. Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17:31-48. doi:10.1016/0169-409X(95)00039-A - PubMed
  45. Quemeneur F, Rammal A, Rinaudo M, Pépin-Donat B. Large and Giant Vesicles “Decorated” with Chitosan: Effects of pH, Salt or Glucose Stress, and Surface Adhesion. Biomacromolecules. 2007;8:2512-2519. doi:10.1021/bm061227a - PubMed
  46. Wydro P, Krajewska B, Ha̧c-Wydro K. Chitosan as a Lipid Binder: A Langmuir Monolayer Study of Chitosan−Lipid Interactions. Biomacromolecules. 2007;8:2611-2617. doi:10.1021/bm700453x - PubMed
  47. Morrison EE, Costanzo RM. Morphology of olfactory epithelium in humans and other vertebrates. Microsc Res Tech. 1992;23:49-61. doi:10.1002/jemt.1070230105 - PubMed
  48. Singh SK, Dadhania P, Vuddanda PR, Jain A, Velaga S, Singh S. Intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural assessment. RSC Adv. 2016;6:2032-2045. doi:10.1039/C5RA19793G - PubMed
  49. Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm. 2011;415:232-243. doi:10.1016/j.ijpharm.2011.05.044 - PubMed
  50. Zirak MB, Pezeshki A. Effect of Surfactant Concentration on the Particle Size, Stability and Potential Zeta of Beta carotene Nano Lipid Carrier. Int J Curr Microbiol App Sci. 2015;4:924-932. - PubMed
  51. Chang S-H, Lin H-TV, Wu G-J, Tsai GJ. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym. 2015;134:74-81. doi:10.1016/j.carbpol.2015.07.072 - PubMed
  52. Zimmermann E, Müller RH. Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN™) dispersions in artificial gastrointestinal media. Eur J Pharm Biopharm. 2001;52:203-210. doi:10.1016/S0939-6411(01)00167-9 - PubMed
  53. Semalty A, Semalty M, Singh D, Rawat MSM. Phyto-phospholipid complex of catechin in value added herbal drug delivery. J Inclusion Phenomena Macrocyclic Chem. 2012;73:377-386. doi:10.1007/s10847-011-0074-8 - PubMed
  54. Uronnachi E, Attama A, Umeyor C, Nwakile C, Kenechukwu F, Reginald-Opara J. Solidified Reverse Micellar Solution-Based Lipid Microparticles of Miconazole Nitrate: Formulation Design, Biopharmaceutical Characterization, and Dissolution Studies. J Pharm Innov. 2020. doi:10.1007/s12247-020-09514-5 - PubMed
  55. Kolbina M, Schulte A, van Hoogevest P, Körber M, Bodmeier R. Evaluation of Hydrogenated Soybean Phosphatidylcholine Matrices Prepared by Hot Melt Extrusion for Oral Controlled Delivery of Water-Soluble Drugs. AAPS PharmSciTech. 2019;20:159. doi:10.1208/s12249-019-1366-3 - PubMed
  56. Mwiiri FK, Brandner JM, Daniels R. Electrospun Bioactive Wound Dressing Containing Colloidal Dispersions of Birch Bark Dry Extract. Pharmaceutics. 2020;12:770. doi:10.3390/pharmaceutics12080770 - PubMed
  57. Saoji SD, Raut NA, Dhore PW, Borkar CD, Popielarczyk M, Dave VS. Preparation and Evaluation of Phospholipid-Based Complex of Standardized Centella Extract (SCE) for the Enhanced Delivery of Phytoconstituents. AAPS J. 2016;18:102-114. doi:10.1208/s12248-015-9837-2 - PubMed
  58. Ibrahim M, El-Badry M, Hassan M. Performance of Poloxamer 407 as Hydrophilic Carrier on the Binary Mixtures with Nimesulide. Farmacia. 2013;61:1137-1150. - PubMed
  59. Jansook P, Fülöp Z, Ritthidej GC. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): physicochemical and solid-solution state characterizations. Drug Dev Ind Pharm. 2019;45:560-567. doi:10.1080/03639045.2019.1569023 - PubMed
  60. Prieto C, Calvo L. Performance of the Biocompatible Surfactant Tween 80, for the Formation of Microemulsions Suitable for New Pharmaceutical Processing. J Appl Chem. 2013;2013:1-10. doi:10.1155/2013/930356 - PubMed
  61. Hadaruga DI, Hadaruga NG, Hermenean A, Rivis A, Pâslaru V, Codina G. Bionanomaterials: Thermal stability of the oleic acid/α-and β-cyclodextrin complexes. Revista de Chimie. 2008;59:994-998. - PubMed
  62. Al-Tawaha A, Al-Karaki G, Massadeh A. Antioxidant activity, total phenols and variation of chemical composition from essential oil in sage (Salvia officinalis L.) grown under protected soilless condition and open field conditions. Adv Environ Biol. 2013;7:894-901. - PubMed
  63. Notman R, Noro MG, Anwar J. Interaction of Oleic Acid with Dipalmitoylphosphatidylcholine (DPPC) Bilayers Simulated by Molecular Dynamics. J Phys Chem B. 2007;111:12748-12755. doi:10.1021/jp0723564 - PubMed
  64. Prenner E, Chiu M. Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci. 2011;3:39-59. doi:10.4103/0975-7406.76463 - PubMed
  65. Talló K, Moner V, de Cabo M, Cócera M, López O. Vesicular nanostructures composed of oleic acid and phosphatidylcholine: Effect of pH and molar ratio. Chem Phys Lipids. 2018;213:96-101. doi:10.1016/j.chemphyslip.2018.04.002 - PubMed
  66. Telang DR, Patil AT, Pethe AM, Tatode AA, Anand S, Dave VS. Kaempferol-phospholipid complex: formulation, and evaluation of improved solubility, in vivo bioavailability, and antioxidant potential of kaempferol. J Excipients Food Chem. 2016;7:89-116. - PubMed
  67. Khurana RK, Bansal AK, Beg S, et al. Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: Systematic development, characterization and evaluation. Int J Pharm. 2017;518:289-306. doi:10.1016/j.ijpharm.2016.12.044 - PubMed
  68. Campos DA, Madureira AR, Gomes AM, Sarmento B, Pintado MM. Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid. Colloids Surf B Biointerfaces. 2014;115:109-117. doi:10.1016/j.colsurfb.2013.10.035 - PubMed
  69. Liu Y, Gu J, Zhang J, et al. LiFePO 4 nanoparticles growth with preferential (010) face modulated by Tween-80. RSC Adv. 2015;5:9745-9751. doi:10.1039/C4RA14791J - PubMed
  70. Gudi G, Krähmer A, Krüger H, Schulz H. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy on Intact Dried Leaves of Sage ( Salvia officinalis L.): Accelerated Chemotaxonomic Discrimination and Analysis of Essential Oil Composition. J Agric Food Chem. 2015;63:8743-8750. doi:10.1021/acs.jafc.5b03852 - PubMed
  71. Ali N, Mattsson K, Rissler J, et al. Analysis of nanoparticle-protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins. Nanotoxicology. 2016;10:226-234. doi:10.3109/17435390.2015.1048324 - PubMed
  72. Lundqvist M, Augustsson C, Lilja M, et al. The nanoparticle protein corona formed in human blood or human blood fractions. Plos One. 2017;12:e0175871. doi:10.1371/journal.pone.0175871 - PubMed
  73. Stolnik S, Daudali B, Arien A, et al. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim et Biophys Acta (BBA) - Biomembrane. 2001;1514:261-279. doi:10.1016/S0005-2736(01)00376-5 - PubMed
  74. Fologea D, Ledden B, McNabb DS, Li J. Electrical characterization of protein molecules by a solid-state nanopore. Appl Phys Lett. 2007;91:53901-1. doi:10.1063/1.2767206 - PubMed
  75. Dasgupta N, Ranjan S, Patra D, Srivastava P, Kumar A, Ramalingam C. Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Interact. 2016;253:100-111. doi:10.1016/j.cbi.2016.05.018 - PubMed
  76. Mudunkotuwa IA, al Minshid A, Grassian VH. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst. 2014;139:870-881. doi:10.1039/C3AN01684F - PubMed
  77. Tsai D-H, DelRio FW, Keene AM, et al. Adsorption and Conformation of Serum Albumin Protein on Gold Nanoparticles Investigated Using Dimensional Measurements and in Situ Spectroscopic Methods. Langmuir. 2011;27:2464-2477. doi:10.1021/la104124d - PubMed
  78. Myshakina NS, Asher SA. Peptide Bond Vibrational Coupling. J Phys Chem B. 2007;111:4271-4279. doi:10.1021/jp065247i - PubMed
  79. Kong J, Yu S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim Biophys Sin. 2007;39:549-559. doi:10.1111/j.1745-7270.2007.00320.x - PubMed
  80. Singh N, Marets C, Boudon J, Millot N, Saviot L, Maurizi L. In vivo protein corona on nanoparticles: does the control of all material parameters orient the biological behavior? Nanoscale Adv. 2021;3(5):1209-1229. doi:10.1039/D0NA00863J - PubMed
  81. Park SJ. Protein-nanoparticle interaction: corona formation and conformational changes in proteins on nanoparticles. Int J Nanomedicine. 2020;15:5783-5802. doi:10.2147/IJN.S254808 - PubMed
  82. Griebenow K, Klibanov AM. Lyophilization-induced reversible changes in the secondary structure of proteins. Proc Natl Acad Sci U S A. 1995;92:10969-10976. doi:10.1073/pnas.92.24.10969 - PubMed
  83. Koliqi, R., Dimchevska, S., Geskovski, N., Petruševski, G., Chacorovska, M., Pejova, B., R. Hristov, Ugarkovic, S., Goracinova, K., 2016. PEO-PPO-PEO/Poly(DL-lactide-co-caprolactone) Nanoparticles as Carriers for SN-38: Design, Optimization and Nano-Bio Interface Interactions. Curr Drug Deliv 13, 339-352. 10.2174/1567201813666151130221806 - PubMed
  84. Stark B, Debbage P, Andreae F, Mosgoeller W, Prassl R. Association of vasoactive intestinal peptide with polymer-grafted liposomes: Structural aspects for pulmonary delivery. Biochim et Biophys Acta (BBA) - Biomembrane. 2007;1768:705-714. doi:10.1016/j.bbamem.2006.11.017 - PubMed
  85. Bodratti A, Alexandridis P. Formulation of Poloxamers for Drug Delivery. J Func Biomater. 2018;9:11. doi:10.3390/jfb9010011 - PubMed
  86. Bikiaris D, Karavelidis K, Giliopoulos P. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior. Int J Nanomedicine. 2011;3021:3021-3032. doi:10.2147/IJN.S26016 - PubMed
  87. Luo Y, Teng Z, Li Y, Wang Q. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym. 2015;122:221-229. doi:10.1016/j.carbpol.2014.12.084 - PubMed
  88. Dharmala K, Yoo JW, Lee CH. Development of Chitosan-SLN Microparticles for chemotherapy: In vitro approach through efflux-transporter modulation. J Control Release. 2008;131:190-197. doi:10.1016/j.jconrel.2008.07.034 - PubMed
  89. Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169-172. doi:10.1016/0378-5173(89)90306-2 - PubMed
  90. Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7:376-385. - PubMed
  91. Huang W-J, Zhang X, Chen W-W. Role of oxidative stress in Alzheimer’s disease. Biomed Report. 2016;4:519-522. doi:10.3892/br.2016.630 - PubMed
  92. Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med. 2017;7:433-440. doi:10.1016/j.jtcme.2016.12.014 - PubMed
  93. Jasicka-Misiak I, Poliwoda A, Petecka M, Buslovych O, Shlyapnikov VA, Wieczorek PP. Antioxidant Phenolic Compounds in Salvia officinalis L. and Salvia sclarea L. Ecologic Chem Eng S. 2018;25:25-142. doi:10.1515/eces-2018-0009 - PubMed
  94. Lopresti AL. Salvia (Sage): A Review of its Potential Cognitive-Enhancing and Protective Effects. Drugs R&D. 2017;17:53-64. doi:10.1007/s40268-016-0157-5 - PubMed
  95. Shalabalija D, Mihailova L, Crcarevska MS, et al. Formulation and optimization of bioinspired rosemary extract loaded PEGylated nanoliposomes for potential treatment of Alzheimer’s disease using design of experiments. J Drug Delivery Sci Technol. 2021;63:102434. doi:10.1016/j.jddst.2021.102434 - PubMed
  96. Ivanova DG, Yaneva ZL. Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy. BioRes Open Access. 2020;9:64-72. doi:10.1089/biores.2019.0028 - PubMed
  97. Poller B, Gutmann H, Krähenbühl S, et al. The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J Neurochem. 2008;107:1358-1368. doi:10.1111/j.1471-4159.2008.05730.x - PubMed
  98. Awortwe C, Fasinu PS, Rosenkranz B. Application of Caco-2 Cell Line in Herb-Drug Interaction Studies: Current Approaches and Challenges. J Pharm Pharm Sci. 2014;17:1-19. doi:10.18433/J30K63 - PubMed
  99. Eleraky NE, Omar MM, Mahmoud HA, Abou-Taleb HA. Nanostructured lipid carriers to mediate brain delivery of Temazepam: Design and in vivo study. Pharmaceutics. 2020;12:451. doi:10.3390/pharmaceutics12050451 - PubMed

Publication Types