Display options
Share it on

Eur J Appl Physiol. 2022 Jan 12; doi: 10.1007/s00421-021-04876-1. Epub 2022 Jan 12.

The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease.

European journal of applied physiology

Panagiotis Ferentinos, Costas Tsakirides, Michelle Swainson, Adam Davison, Marrissa Martyn-St James, Theocharis Ispoglou

Affiliations

  1. Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
  2. Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK.
  3. Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK.
  4. Cytec Biosciences B.V, Amsterdam, The Netherlands.
  5. School of Health and Related Research, University of Sheffield, Sheffield, UK.
  6. Carnegie School of Sport, Leeds Beckett University, Leeds, UK. [email protected].

PMID: 35022875 DOI: 10.1007/s00421-021-04876-1

Abstract

Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs.

OBJECTIVES: to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease.

METHODS: Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed.

RESULTS: six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction.

CONCLUSION: the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.

© 2022. Crown.

Keywords: Aerobic training; Cardiometabolic health; Cardiovascular disease; EPC mobilisation; Endothelial progenitor cells; Exercise; Flow cytometry; High intensity interval training; Moderate intensity continuous training; Resistance exercise; Vascular health

References

  1. Adams V, Lenk K, Linke A, Lenz D, Erbs S, Sandri M, Tarnok A, Gielen S, Emmrich F, Schuler G, Hambrecht R (2004) Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol 24(4):684–690. https://doi.org/10.1161/01.ATV.0000124104.23702.a0 - PubMed
  2. Adams V, Heiker JT, Hollriegel R, Beck EB, Woitek FJ, Erbs S, Bluher M, Stumvoll M, Beck-Sickinger AG, Schuler G, Linke A (2013) Adiponectin promotes the migration of circulating angiogenic cells through p38-mediated induction of the CXCR4 receptor. Int J Cardiol 167(5):2039–2046. https://doi.org/10.1016/j.ijcard.2012.05.056 - PubMed
  3. Amato M, Frigerio B, Castelnuovo S, Ravani A, Sansaro D, Tremoli E, Squellerio I, Cavalca V, Veglia F, Sirtori CR, Werba JP, Baldassarre D (2013) Effects of smoking regular or light cigarettes on brachial artery flow-mediated dilation. Atherosclerosis 228(1):153–160. https://doi.org/10.1016/j.atherosclerosis.2013.02.037 - PubMed
  4. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967 - PubMed
  5. Asahara T, Kawamoto A, Masuda H (2011) Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells 29(11):1650–1655. https://doi.org/10.1002/stem.745 - PubMed
  6. Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS (2017) Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med 51(6):494–503. https://doi.org/10.1136/bjsports-2015-095841 - PubMed
  7. Black MA, Cable NT, Thijssen DH, Green DJ (2009) Impact of age, sex, and exercise on brachial artery flow-mediated dilatation. Am J Physiol Heart Circ Physiol 297(3):H1109-1116. https://doi.org/10.1152/ajpheart.00226.2009 - PubMed
  8. Borges JP, Lopes GO, Verri V, Coelho MP, Nascimento PM, Kopiler DA, Tibirica E (2016) A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging. Braz J Med Biol Res 49(10):e5541. https://doi.org/10.1590/1414-431X20165541 - PubMed
  9. Borges JP, Nascimento AR, Lopes GO, Medeiros-Lima DJM, Coelho MP, Nascimento PMC, Kopiler DA, Matsuura C, Mediano MFF, Tibirica E (2018) The impact of exercise frequency upon microvascular endothelium function and oxidative stress among patients with coronary artery disease. Clin Physiol Funct Imaging 38(5):840–846. https://doi.org/10.1111/cpf.12492 - PubMed
  10. Campbell M, McKenzie JE, Sowden A, Katikireddi SV, Brennan SE, Ellis S, Hartmann-Boyce J, Ryan R, Shepperd S, Thomas J, Welch V, Thomson H (2020) Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ 368:l6890. https://doi.org/10.1136/bmj.l6890 - PubMed
  11. Carter SE, Gladwell VF (2017) Effect of breaking up sedentary time with callisthenics on endothelial function. J Sports Sci 35(15):1508–1514. https://doi.org/10.1080/02640414.2016.1223331 - PubMed
  12. Cavalcante SL, Lopes S, Bohn L, Cavero-Redondo I, Alvarez-Bueno C, Viamonte S, Santos M, Oliveira J, Ribeiro F (2019) Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Rev Port Cardiol 38(11):817–827. https://doi.org/10.1016/j.repc.2019.02.016 - PubMed
  13. Cesari F, Sofi F, Caporale R, Capalbo A, Marcucci R, Macchi C, Lova RM, Cellai T, Vannucci M, Gensini GF, Abbate R, Gori AM (2009) Relationship between exercise capacity, endothelial progenitor cells and cytochemokines in patients undergoing cardiac rehabilitation. Thromb Haemost 101(3):521–526 - PubMed
  14. Cesari F, Marcucci R, Gori AM, Burgisser C, Francini S, Sofi F, Gensini GF, Abbate R, Fattirolli F (2013) Impact of a cardiac rehabilitation program and inflammatory state on endothelial progenitor cells in acute coronary syndrome patients. Int J Cardiol 167(5):1854–1859. https://doi.org/10.1016/j.ijcard.2012.04.157 - PubMed
  15. Chambers SE, O’Neill CL, O’Doherty TM, Medina RJ, Stitt AW (2013) The role of immune-related myeloid cells in angiogenesis. Immunobiology 218(11):1370–1375. https://doi.org/10.1016/j.imbio.2013.06.010 - PubMed
  16. Chen TG, Zhong ZY, Sun GF, Zhou YX, Zhao Y (2011) Effects of tumour necrosis factor-alpha on activity and nitric oxide synthase of endothelial progenitor cells from peripheral blood. Cell Prolif 44(4):352–359. https://doi.org/10.1111/j.1365-2184.2011.00764.x - PubMed
  17. Chiva-Blanch G, Condines, Magraner E, Roth I, Valderas-Martinez P, Arranz S, Casas R, Martinez-Huelamo M, Vallverdu-Queralt A, Quifer-Rada P, Lamuela-Raventos RM, Estruch R (2014) The non-alcoholic fraction of beer increases stromal cell derived factor 1 and the number of circulating endothelial progenitor cells in high cardiovascular risk subjects: a randomized clinical trial. Atherosclerosis 233(2):518–524. https://doi.org/10.1016/j.atherosclerosis.2013.12.048 - PubMed
  18. Conraads VM, Pattyn N, De Maeyer C, Beckers PJ, Coeckelberghs E, Cornelissen VA, Denollet J, Frederix G, Goetschalckx K, Hoymans VY, Possemiers N, Schepers D, Shivalkar B, Voigt JU, Van Craenenbroeck EM, Vanhees L (2015) Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. Int J Cardiol 179:203–210. https://doi.org/10.1016/j.ijcard.2014.10.155 - PubMed
  19. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Juni P, Lettino M, Marx N, Mellbin LG, Ostgren CJ, Rocca B, Roffi M, Sattar N, Seferovic PM, Sousa-Uva M, Valensi P, Wheeler DC, Group ESCSD (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486 - PubMed
  20. De Biase C, De Rosa R, Luciano R, De Luca S, Capuano E, Trimarco B, Galasso G (2013) Effects of physical activity on endothelial progenitor cells (EPCs). Front Physiol 4:414. https://doi.org/10.3389/fphys.2013.00414 - PubMed
  21. Devaraj S, Glaser N, Griffen S, Wang-Polagruto J, Miguelino E, Jialal I (2006) Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55(3):774–779. https://doi.org/10.2337/diabetes.55.03.06.db05-1417 - PubMed
  22. Dopheide JF, Geissler P, Rubrech J, Trumpp A, Zeller GC, Bock K, Dorweiler B, Dunschede F, Munzel T, Radsak MP, Espinola-Klein C (2016a) Inflammation is associated with a reduced number of pro-angiogenic Tie-2 monocytes and endothelial progenitor cells in patients with critical limb ischemia. Angiogenesis 19(1):67–78. https://doi.org/10.1007/s10456-015-9489-y - PubMed
  23. Dopheide JF, Geissler P, Rubrech J, Trumpp A, Zeller GC, Daiber A, Munzel T, Radsak MP, Espinola-Klein C (2016b) Influence of exercise training on proangiogenic TIE-2 monocytes and circulating angiogenic cells in patients with peripheral arterial disease. Clin Res Cardiol 105(8):666–676. https://doi.org/10.1007/s00392-016-0966-0 - PubMed
  24. Eleuteri E, Mezzani A, Di Stefano A, Vallese D, Gnemmi I, Delle Donne L, Taddeo A, Della Bella S, Giannuzzi P (2013) Aerobic training and angiogenesis activation in patients with stable chronic heart failure: a preliminary report. Biomarkers 18(5):418–424. https://doi.org/10.3109/1354750X.2013.805342 - PubMed
  25. Erbs S, Hollriegel R, Linke A, Beck EB, Adams V, Gielen S, Mobius-Winkler S, Sandri M, Krankel N, Hambrecht R, Schuler G (2010) Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail 3(4):486–494. https://doi.org/10.1161/CIRCHEARTFAILURE.109.868992 - PubMed
  26. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A (2008a) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197(2):496–503. https://doi.org/10.1016/j.atherosclerosis.2007.12.039 - PubMed
  27. Fadini GP, de Kreutzenberg S, Albiero M, Coracina A, Pagnin E, Baesso I, Cignarella A, Bolego C, Plebani M, Nardelli GB, Sartore S, Agostini C, Avogaro A (2008b) Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arterioscler Thromb Vasc Biol 28(5):997–1004. https://doi.org/10.1161/ATVBAHA.107.159558 - PubMed
  28. Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110(4):624–637. https://doi.org/10.1161/circresaha.111.243386 - PubMed
  29. Fernandez JM, Rosado-Alvarez D, Da Silva Grigoletto ME, Rangel-Zuniga OA, Landaeta-Diaz LL, Caballero-Villarraso J, Lopez-Miranda J, Perez-Jimenez F, Fuentes-Jimenez F (2012) Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome. Clin Sci (lond) 123(6):361–373. https://doi.org/10.1042/CS20110477 - PubMed
  30. Fornoni A, Raij L (2005) Metabolic syndrome and endothelial dysfunction. Curr Hypertens Rep 7(2):88–95 - PubMed
  31. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613. https://doi.org/10.1128/mcb.16.9.4604 - PubMed
  32. Fujii H, Li SH, Szmitko PE, Fedak PW, Verma S (2006) C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells. Arterioscler Thromb Vasc Biol 26(11):2476–2482. https://doi.org/10.1161/01.ATV.0000242794.65541.02 - PubMed
  33. Gagliardi JA, Maciel N, Castellano JL, Masoli O, Miksztowicz V, Berg G, Bermejo E, Lazzari M, Gelpi RJ (2016) Relationship between endothelial progenitor cells and vascular endothelial growth factor and its variation with exercise. Thromb Res 137:92–96. https://doi.org/10.1016/j.thromres.2015.11.012 - PubMed
  34. Gatta L, Armani A, Iellamo F, Consoli C, Molinari F, Caminiti G, Volterrani M, Rosano GM (2012) Effects of a short-term exercise training on serum factors involved in ventricular remodelling in chronic heart failure patients. Int J Cardiol 155(3):409–413. https://doi.org/10.1016/j.ijcard.2010.10.045 - PubMed
  35. Gevaert AB, Beckers PJ, Van Craenenbroeck AH, Lemmens K, Van De Heyning CM, Heidbuchel H, Vrints CJ, Van Craenenbroeck EM (2019) Endothelial dysfunction and cellular repair in heart failure with preserved ejection fraction: response to a single maximal exercise bout. Eur J Heart Fail 21(1):125–127. https://doi.org/10.1002/ejhf.1339 - PubMed
  36. Gokce N, Keaney JF Jr, Hunter LM, Watkins MT, Nedeljkovic ZS, Menzoian JO, Vita JA (2003) Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol 41(10):1769–1775 - PubMed
  37. Goncalves FM, Jacob-Ferreira AL, Gomes VA, Casella-Filho A, Chagas AC, Marcaccini AM, Gerlach RF, Tanus-Santos JE (2009) Increased circulating levels of matrix metalloproteinase (MMP)-8, MMP-9, and pro-inflammatory markers in patients with metabolic syndrome. Clin Chim Acta 403(1–2):173–177. https://doi.org/10.1016/j.cca.2009.02.013 - PubMed
  38. Guazzi M, Reina G, Gripari P, Tumminello G, Vicenzi M, Arena R (2009) Prognostic value of flow-mediated dilatation following myocardial infarction. Int J Cardiol 132(1):45–50. https://doi.org/10.1016/j.ijcard.2007.10.036 - PubMed
  39. Guzel NA, Pinar L, Colakoglu F, Karacan S, Ozer C (2012) Long-term callisthenic exercise-related changes in blood lipids, homocysteine, nitric oxide levels and body composition in middle-aged healthy sedentary women. China J Physiol 55(3):202–209. https://doi.org/10.4077/CJP.2012.AMM122 - PubMed
  40. Hadi HA, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3(6):853–876 - PubMed
  41. Hadi HA, Carr CS, Al Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1(3):183–198 - PubMed
  42. Hansen D, Eijnde BO, Roelants M, Broekmans T, Rummens JL, Hensen K, Daniels A, Van Erum M, Bonne K, Reyckers I, Alders T, Berger J, Dendale P (2011) Clinical benefits of the addition of lower extremity low-intensity resistance muscle training to early aerobic endurance training intervention in patients with coronary artery disease: a randomized controlled trial. J Rehabil Med 43(9):800–807. https://doi.org/10.2340/16501977-0853 - PubMed
  43. Hortenhuber T, Rami-Mehar B, Satler M, Nagl K, Hobaus C, Hollerl F, Koppensteiner R, Schernthaner G, Schober E, Schernthaner GH (2013) Endothelial progenitor cells are related to glycemic control in children with type 1 diabetes over time. Diabetes Care 36(6):1647–1653. https://doi.org/10.2337/dc12-1206 - PubMed
  44. Hoymans VY, Van Craenenbroeck AH, Bruyndonckx L, van Ierssel SH, Vrints CJ, Conraads VM, Van Craenenbroeck EM (2012) TransFix(R) for delayed flow cytometry of endothelial progenitor cells and angiogenic T cells. Microvasc Res 84(3):384–386. https://doi.org/10.1016/j.mvr.2012.08.007 - PubMed
  45. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23(7):1185–1189. https://doi.org/10.1161/01.ATV.0000073832.49290.B5 - PubMed
  46. Huang PH, Chen YH, Wang CH, Chen JS, Tsai HY, Lin FY, Lo WY, Wu TC, Sata M, Chen JW, Lin SJ (2009) Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol 29(8):1179–1184. https://doi.org/10.1161/ATVBAHA.109.189175 - PubMed
  47. Ibeggazene S, Moore C, Tsakirides C, Swainson M, Ispoglou T, Birch K (2020) UK cardiac rehabilitation fit for purpose? A community-based observational cohort study. BMJ Open 10(10):e037980. https://doi.org/10.1136/bmjopen-2020-037980 - PubMed
  48. Jo E-A, Wu S-S, Han H-R, Park J-J, Park S, Cho K-I (2019) Effects of exergaming in postmenopausal women with high cardiovascular risk: a randomized controlled trial. Clin Cardiol. https://doi.org/10.1002/clc.23324 - PubMed
  49. Jo E-A, Cho K-I, Park J-J, Im D-S, Choi J-H, Kim B-J (2020) Effects of high-intensity interval training versus moderate-intensity continuous training on epicardial fat thickness and endothelial function in hypertensive metabolic syndrome. Metab Syndr Relat Disord. https://doi.org/10.1089/met.2018.0128 - PubMed
  50. Kazmierski M, Wojakowski W, Michalewska-Wludarczyk A, Podolecka E, Kotowski M, Machalinski B, Tendera M (2015) Exercise-induced mobilisation of endothelial progenitor cells in patients with premature coronary heart disease. Kardiol Pol 73(6):411–418. https://doi.org/10.5603/KP.a2014.0248 - PubMed
  51. Kissel CK, Lehmann R, Assmus B, Aicher A, Honold J, Fischer-Rasokat U, Heeschen C, Spyridopoulos I, Dimmeler S, Zeiher AM (2007) Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol 49(24):2341–2349. https://doi.org/10.1016/j.jacc.2007.01.095 - PubMed
  52. Koller L, Hohensinner P, Sulzgruber P, Blum S, Maurer G, Wojta J, Hulsmann M, Niessner A (2016) Prognostic relevance of circulating endothelial progenitor cells in patients with chronic heart failure. Thromb Haemost 116(2):309–316. https://doi.org/10.1160/TH16-01-0051 - PubMed
  53. Kourek C, Alshamari M, Mitsiou G, Psarra K, Delis D, Linardatou V, Pittaras T, Ntalianis A, Papadopoulos C, Panagopoulou N, Vasileiadis I, Nanas S, Karatzanos E (2020a) The acute and long-term effects of a cardiac rehabilitation program on endothelial progenitor cells in chronic heart failure patients: comparing two different exercise training protocols. Int J Cardiol Heart Vasc 32:100702. https://doi.org/10.1016/j.ijcha.2020.100702 - PubMed
  54. Kourek C, Karatzanos E, Psarra K, Georgiopoulos G, Delis D, Linardatou V, Gavrielatos G, Papadopoulos C, Nanas S, Dimopoulos S (2020b) Endothelial progenitor cells mobilization after maximal exercise according to heart failure severity. World J Cardiol 12(11):526–539. https://doi.org/10.4330/wjc.v12.i11.526 - PubMed
  55. Koutroumpi M, Dimopoulos S, Psarra K, Kyprianou T, Nanas S (2012) Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects. World J Cardiol 4(12):312–326. https://doi.org/10.4330/wjc.v4.i12.312 - PubMed
  56. Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED (2006) Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J 152(1):190–195. https://doi.org/10.1016/j.ahj.2006.02.001 - PubMed
  57. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109(2):220–226. https://doi.org/10.1161/01.CIR.0000109141.48980.37 - PubMed
  58. Laufs U, Urhausen A, Werner N, Scharhag J, Heitz A, Kissner G, Bohm M, Kindermann W, Nickenig G (2005) Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil 12(4):407–414 - PubMed
  59. Lee PS, Poh KK (2014) Endothelial progenitor cells in cardiovascular diseases. World J Stem Cells 6(3):355–366. https://doi.org/10.4252/wjsc.v6.i3.355 - PubMed
  60. Lu CL, Leu JG, Liu WC, Zheng CM, Lin YF, Shyu JF, Wu CC, Lu KC (2016) Endothelial progenitor cells predict long-term mortality in hemodialysis patients. Int J Med Sci 13(3):240–247. https://doi.org/10.7150/ijms.14209 - PubMed
  61. Luk TH, Dai YL, Siu CW, Yiu KH, Chan HT, Fong DY, Lee SW, Li SW, Tam S, Lau CP, Tse HF (2009) Habitual physical activity is associated with endothelial function and endothelial progenitor cells in patients with stable coronary artery disease. Eur J Cardiovasc Prev Rehabil 16(4):464–471. https://doi.org/10.1097/HJR.0b013e32832b38be - PubMed
  62. Luk TH, Dai YL, Siu CW, Yiu KH, Chan HT, Lee SW, Li SW, Fong B, Wong WK, Tam S, Lau CP, Tse HF (2012) Effect of exercise training on vascular endothelial function in patients with stable coronary artery disease: a randomized controlled trial. Eur J Prev Cardiol 19(4):830–839. https://doi.org/10.1177/1741826711415679 - PubMed
  63. Lutz AH, Blumenthal JB, Landers-Ramos RQ, Prior SJ (2016) Exercise-induced endothelial progenitor cell mobilization is attenuated in impaired glucose tolerance and type 2 diabetes. J Appl Physiol (1985) 121(1):36–41. https://doi.org/10.1152/japplphysiol.00349.2016 - PubMed
  64. Madonna R, De Caterina R (2015) Circulating endothelial progenitor cells: do they live up to their name? Vascul Pharmacol 67–69:2–5. https://doi.org/10.1016/j.vph.2015.02.018 - PubMed
  65. Maiorino MI, Bellastella G, Petrizzo M, Gicchino M, Caputo M, Giugliano D, Esposito K (2017) Effect of a Mediterranean diet on endothelial progenitor cells and carotid intima-media thickness in type 2 diabetes: follow-up of a randomized trial. Eur J Prev Cardiol 24(4):399–408. https://doi.org/10.1177/2047487316676133 - PubMed
  66. Manetos C, Dimopoulos S, Tzanis G, Vakrou S, Tasoulis A, Kapelios C, Agapitou V, Ntalianis A, Terrovitis J, Nanas S (2011) Skeletal muscle microcirculatory abnormalities are associated with exercise intolerance, ventilatory inefficiency, and impaired autonomic control in heart failure. J Heart Lung Transplant 30(12):1403–1408. https://doi.org/10.1016/j.healun.2011.08.020 - PubMed
  67. Manfredini F, Rigolin GM, Malagoni AM, Soffritti S, Boari B, Conconi F, Castoldi GL, Catizone L, Zamboni P, Manfredini R (2007) Exercise capacity and circulating endothelial progenitor cells in hemodialysis patients. Int J Sports Med 28(5):368–373. https://doi.org/10.1055/s-2006-924363 - PubMed
  68. Marini E, Mariani PG, Ministrini S, Pippi R, Aiello C, Reginato E, Siepi D, Innocente S, Lombardini R, Paltriccia R, Kararoudi MN, Lupattelli G, De Feo P, Pasqualini L (2019) Combined aerobic and resistance training improves microcirculation in metabolic syndrome. J Sports Med Phys Fitness 59(9):1571–1576. https://doi.org/10.23736/s0022-4707.18.09077-1 - PubMed
  69. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368 - PubMed
  70. Medina RJ, O’Neill CL, O’Doherty TM, Knott H, Guduric-Fuchs J, Gardiner TA, Stitt AW (2011) Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. Mol Med (cambridge, Mass) 17(9–10):1045–1055. https://doi.org/10.2119/molmed.2011.00129 - PubMed
  71. Medina RJ, O’Neill CL, O’Doherty TM, Wilson SE, Stitt AW (2012) Endothelial progenitors as tools to study vascular disease. Stem Cells Int 2012:346735. https://doi.org/10.1155/2012/346735 - PubMed
  72. Medina RJ, Barber CL, Sabatier F, Dignat-George F, Melero-Martin JM, Khosrotehrani K, Ohneda O, Randi AM, Chan JKY, Yamaguchi T, Van Hinsbergh VWM, Yoder MC, Stitt AW (2017) Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl Med 6(5):1316–1320. https://doi.org/10.1002/sctm.16-0360 - PubMed
  73. Meyer B, Mortl D, Strecker K, Hulsmann M, Kulemann V, Neunteufl T, Pacher R, Berger R (2005) Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. J Am Coll Cardiol 46(6):1011–1018. https://doi.org/10.1016/j.jacc.2005.04.060 - PubMed
  74. Mezzani A, Grassi B, Jones AM, Giordano A, Corra U, Porcelli S, Della Bella S, Taddeo A, Giannuzzi P (2013) Speeding of pulmonary VO2 on-kinetics by light-to-moderate-intensity aerobic exercise training in chronic heart failure: clinical and pathophysiological correlates. Int J Cardiol 167(5):2189–2195. https://doi.org/10.1016/j.ijcard.2012.05.124 - PubMed
  75. Mitsiou G, Karatzanos E, Smilios I, Psarra K, Patsaki I, Douda HT, Ntalianis A, Nanas S, Tokmakidis SP (2020) Exercise promotes endothelial progenitor cell mobilization in patients with chronic heart failure. Eur J Prev Cardiol. https://doi.org/10.1093/eurjpc/zwaa046 - PubMed
  76. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005 - PubMed
  77. Muggeridge D, Dodd J, Ross MD (2021) CD34(+) progenitors are predictive of mortality and are associated with physical activity in cardiovascular disease patients. Atherosclerosis 333:108–115. https://doi.org/10.1016/j.atherosclerosis.2021.07.004 - PubMed
  78. National Heart LaBI National Heart, Lung and Blood Institute, Study Quality Assesment Tools. National Heart, Lung and Blood Institute (NHLBI) (2021) https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools . Accessed March 2020 - PubMed
  79. Obi S, Yamamoto K, Ando J (2014) Effects of shear stress on endothelial progenitor cells. J Biomed Nanotechnol 10(10):2586–2597. https://doi.org/10.1166/jbn.2014.2014 - PubMed
  80. Ozuyaman B, Ebner P, Niesler U, Ziemann J, Kleinbongard P, Jax T, Godecke A, Kelm M, Kalka C (2005) Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thromb Haemost 94(4):770–772. https://doi.org/10.1160/TH05-01-0038 - PubMed
  81. Palmefors H, DuttaRoy S, Rundqvist B, Borjesson M (2014) The effect of physical activity or exercise on key biomarkers in atherosclerosis—a systematic review. Atherosclerosis 235(1):150–161. https://doi.org/10.1016/j.atherosclerosis.2014.04.026 - PubMed
  82. Paul JD, Powell TM, Thompson M, Benjamin M, Rodrigo M, Carlow A, Annavajjhala V, Shiva S, Dejam A, Gladwin MT, McCoy JP, Zalos G, Press B, Murphy M, Hill JM, Csako G, Waclawiw MA, Cannon RO 3rd (2007) Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation. J Cardiopulm Rehabil Prev 27(2):65–73. https://doi.org/10.1097/01.HCR.0000265031.10145.50 - PubMed
  83. Pearson MJ, Smart NA (2017) Effect of exercise training on endothelial function in heart failure patients: a systematic review meta-analysis. Int J Cardiol 231:234–243. https://doi.org/10.1016/j.ijcard.2016.12.145 - PubMed
  84. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS (2015) The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med 45(5):679–692. https://doi.org/10.1007/s40279-015-0321-z - PubMed
  85. Ribeiro F, Ribeiro IP, Alves AJ, do Ceu Monteiro M, Oliveira NL, Oliveira J, Amado F, Remiao F, Duarte JA (2013) Effects of exercise training on endothelial progenitor cells in cardiovascular disease: a systematic review. Am J Phys Med Rehabil 92(11):1020–1030. https://doi.org/10.1097/PHM.0b013e31829b4c4f - PubMed
  86. Ribeiro F, Ribeiro IP, Goncalves AC, Alves AJ, Melo E, Fernandes R, Costa R, Sarmento-Ribeiro AB, Duarte JA, Carreira IM, Witkowski S, Oliveira J (2017) Effects of resistance exercise on endothelial progenitor cell mobilization in women. Sci Rep 7(1):17880. https://doi.org/10.1038/s41598-017-18156-6 - PubMed
  87. Rocha NG, Sales AR, Penedo LA, Pereira FS, Silva MS, Miranda RL, Silva JF, Silva BM, Santos AA, Nobrega AC (2015) Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome. Biomed Res Int 2015:920356. https://doi.org/10.1155/2015/920356 - PubMed
  88. Ross MD, Wekesa AL, Phelan JP, Harrison M (2014) Resistance exercise increases endothelial progenitor cells and angiogenic factors. Med Sci Sports Exerc 46(1):16–23. https://doi.org/10.1249/MSS.0b013e3182a142da - PubMed
  89. Rummens JL, Daniels A, Dendale P, Hensen K, Hendrikx M, Berger J, Koninckx R, Hansen D (2012) Suppressed increase in blood endothelial progenitor cell content as result of single exhaustive exercise bout in male revascularised coronary artery disease patients. Acta Clin Belg 67(4):262–269. https://doi.org/10.2143/ACB.67.4.2062670 - PubMed
  90. Sambataro M, Seganfreddo E, Canal F, Furlan A, Del Pup L, Niero M, Paccagnella A, Gherlinzoni F, Dei Tos AP (2014) Prognostic significance of circulating and endothelial progenitor cell markers in type 2 diabetic foot. Int J Vasc Med 2014:589412. https://doi.org/10.1155/2014/589412 - PubMed
  91. Sandri M, Adams V, Gielen S, Linke A, Lenk K, Krankel N, Lenz D, Erbs S, Scheinert D, Mohr FW, Schuler G, Hambrecht R (2005) Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemic syndromes: results of 3 randomized studies. Circulation 111(25):3391–3399. https://doi.org/10.1161/CIRCULATIONAHA.104.527135 - PubMed
  92. Sandri M, Beck EB, Adams V, Gielen S, Lenk K, Hollriegel R, Mangner N, Linke A, Erbs S, Mobius-Winkler S, Scheinert D, Hambrecht R, Schuler G (2011) Maximal exercise, limb ischemia, and endothelial progenitor cells. Eur J Cardiovasc Prev Rehabil 18(1):55–64. https://doi.org/10.1097/HJR.0b013e32833ba654 - PubMed
  93. Sandri M, Viehmann M, Adams V, Rabald K, Mangner N, Hollriegel R, Lurz P, Erbs S, Linke A, Kirsch K, Mobius-Winkler S, Thiery J, Teupser D, Hambrecht R, Schuler G, Gielen S (2016) Chronic heart failure and aging - effects of exercise training on endothelial function and mechanisms of endothelial regeneration: Results from the Leipzig Exercise Intervention in Chronic heart failure and Aging (LEICA) study. Eur J Prev Cardiol 23(4):349–358. https://doi.org/10.1177/2047487315588391 - PubMed
  94. Sarto P, Balducci E, Balconi G, Fiordaliso F, Merlo L, Tuzzato G, Pappagallo GL, Frigato N, Zanocco A, Forestieri C, Azzarello G, Mazzucco A, Valenti MT, Alborino F, Noventa D, Vinante O, Pascotto P, Sartore S, Dejana E, Latini R (2007) Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. J Card Fail 13(9):701–708. https://doi.org/10.1016/j.cardfail.2007.06.722 - PubMed
  95. Scalone G, De Caterina A, Leone AM, Tritarelli A, Mollo R, Pinnacchio G, D’Amario D, Lanza GA, Crea F (2013) Effect of exercise on circulating endothelial progenitor cells in microvascular angina. Circ J 77(7):1777–1782 - PubMed
  96. Schlager O, Giurgea A, Schuhfried O, Seidinger D, Hammer A, Groger M, Fialka-Moser V, Gschwandtner M, Koppensteiner R, Steiner S (2011) Exercise training increases endothelial progenitor cells and decreases asymmetric dimethylarginine in peripheral arterial disease: a randomized controlled trial. Atherosclerosis 217(1):240–248. https://doi.org/10.1016/j.atherosclerosis.2011.03.018 - PubMed
  97. Schmidt-Lucke C, Fichtlscherer S, Aicher A, Tschope C, Schultheiss HP, Zeiher AM, Dimmeler S (2010) Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS ONE 5(11):e13790. https://doi.org/10.1371/journal.pone.0013790 - PubMed
  98. Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C, Rossig L, Corbaz A, Chvatchko Y, Zeiher AM, Dimmeler S (2005) p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 111(9):1184–1191. https://doi.org/10.1161/01.CIR.0000157156.85397.A1 - PubMed
  99. Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, Bragazzi N (2018) Effects of acute and chronic exercise on immunological parameters in the elderly aged: can physical activity counteract the effects of aging? Front Immunol 9:2187. https://doi.org/10.3389/fimmu.2018.02187 - PubMed
  100. Sen S, McDonald SP, Coates PT, Bonder CS (2011) Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin Sci (lond) 120(7):263–283. https://doi.org/10.1042/CS20100429 - PubMed
  101. Shaffer RG, Greene S, Arshi A, Supple G, Bantly A, Moore JS, Parmacek MS, Mohler ER 3rd (2006) Effect of acute exercise on endothelial progenitor cells in patients with peripheral arterial disease. Vasc Med 11(4):219–226. https://doi.org/10.1177/1358863x06072213 - PubMed
  102. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103(23):2776–2779 - PubMed
  103. Sibal L, Agarwal SC, Home PD, Boger RH (2010) The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev 6(2):82–90. https://doi.org/10.2174/157340310791162659 - PubMed
  104. Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V, Dieberg G (2015) Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc 13(1):9–18. https://doi.org/10.1097/XEB.0000000000000020 - PubMed
  105. Spyridopoulos I, Fichtlscherer S, Popp R, Toennes SW, Fisslthaler B, Trepels T, Zernecke A, Liehn EA, Weber C, Zeiher AM, Dimmeler S, Haendeler J (2008) Caffeine enhances endothelial repair by an AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 28(11):1967–1974. https://doi.org/10.1161/ATVBAHA.108.174060 - PubMed
  106. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97(11):2601–2610. https://doi.org/10.1172/JCI118709 - PubMed
  107. Steiner S, Niessner A, Ziegler S, Richter B, Seidinger D, Pleiner J, Penka M, Wolzt M, Huber K, Wojta J, Minar E, Kopp CW (2005) Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis 181(2):305–310. https://doi.org/10.1016/j.atherosclerosis.2005.01.006 - PubMed
  108. Strain WD, Paldánius PM (2018) Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol 17(1):57. https://doi.org/10.1186/s12933-018-0703-2 - PubMed
  109. Thon JN (2014) SDF-1 directs megakaryocyte relocation. Blood 124(2):161–163. https://doi.org/10.1182/blood-2014-05-571653 - PubMed
  110. Thum T, Tsikas D, Stein S, Schultheiss M, Eigenthaler M, Anker SD, Poole-Wilson PA, Ertl G, Bauersachs J (2005) Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. J Am Coll Cardiol 46(9):1693–1701. https://doi.org/10.1016/j.jacc.2005.04.066 - PubMed
  111. Valgimigli M, Rigolin GM, Fucili A, Porta MD, Soukhomovskaia O, Malagutti P, Bugli AM, Bragotti LZ, Francolini G, Mauro E, Castoldi G, Ferrari R (2004) CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 110(10):1209–1212. https://doi.org/10.1161/01.CIR.0000136813.89036.21 - PubMed
  112. Van Craenenbroeck EM, Conraads VM, Van Bockstaele DR, Haine SE, Vermeulen K, Van Tendeloo VF, Vrints CJ, Hoymans VY (2008) Quantification of circulating endothelial progenitor cells: a methodological comparison of six flow cytometric approaches. J Immunol Methods 332(1–2):31–40. https://doi.org/10.1016/j.jim.2007.12.006 - PubMed
  113. Van Craenenbroeck EM, Denollet J, Paelinck BP, Beckers P, Possemiers N, Hoymans VY, Vrints CJ, Conraads VM (2009) Circulating CD34+/KDR+ endothelial progenitor cells are reduced in chronic heart failure patients as a function of Type D personality. Clin Sci (lond) 117(4):165–172. https://doi.org/10.1042/CS20080564 - PubMed
  114. Van Craenenbroeck EM, Beckers PJ, Possemiers NM, Wuyts K, Frederix G, Hoymans VY, Wuyts F, Paelinck BP, Vrints CJ, Conraads VM (2010a) Exercise acutely reverses dysfunction of circulating angiogenic cells in chronic heart failure. Eur Heart J 31(15):1924–1934. https://doi.org/10.1093/eurheartj/ehq058 - PubMed
  115. Van Craenenbroeck EM, Hoymans VY, Beckers PJ, Possemiers NM, Wuyts K, Paelinck BP, Vrints CJ, Conraads VM (2010b) Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Res Cardiol 105(5):665–676. https://doi.org/10.1007/s00395-010-0105-4 - PubMed
  116. Van Craenenbroeck EM, Bruyndonckx L, Van Berckelaer C, Hoymans VY, Vrints CJ, Conraads VM (2011) The effect of acute exercise on endothelial progenitor cells is attenuated in chronic heart failure. Eur J Appl Physiol 111(9):2375–2379. https://doi.org/10.1007/s00421-011-1843-1 - PubMed
  117. Van Craenenbroeck EM, Van Craenenbroeck AH, van Ierssel S, Bruyndonckx L, Hoymans VY, Vrints CJ, Conraads VM (2013) Quantification of circulating CD34+/KDR+/CD45dim endothelial progenitor cells: analytical considerations. Int J Cardiol 167(5):1688–1695. https://doi.org/10.1016/j.ijcard.2012.10.047 - PubMed
  118. Van Craenenbroeck EM, Frederix G, Pattyn N, Beckers P, Van Craenenbroeck AH, Gevaert A, Possemiers N, Cornelissen V, Goetschalckx K, Vrints CJ, Vanhees L, Hoymans VY (2015) Effects of aerobic interval training and continuous training on cellular markers of endothelial integrity in coronary artery disease: a SAINTEX-CAD substudy. Am J Physiol Heart Circ Physiol 309(11):H1876-1882. https://doi.org/10.1152/ajpheart.00341.2015 - PubMed
  119. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1):E1-7 - PubMed
  120. Verma S, Anderson TJ (2002) Fundamentals of endothelial function for the clinical cardiologist. Circulation 105(5):546–549 - PubMed
  121. Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH, Badiwala MV, Mickle DA, Weisel RD, Fedak PW, Stewart DJ, Kutryk MJ (2004) C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109(17):2058–2067. https://doi.org/10.1161/01.CIR.0000127577.63323.24 - PubMed
  122. Volaklis KA, Tokmakidis SP, Halle M (2013) Acute and chronic effects of exercise on circulating endothelial progenitor cells in healthy and diseased patients. Clin Res Cardiol 102(4):249–257. https://doi.org/10.1007/s00392-012-0517-2 - PubMed
  123. Waclawovsky G, Umpierre D, Figueira FR, De Lima ES, Alegretti AP, Schneider L, Matte US, Rodrigues TC, Schaan BD (2016) Exercise on progenitor cells in healthy subjects and patients with type 1 diabetes. Med Sci Sports Exerc 48(2):190–199. https://doi.org/10.1249/MSS.0000000000000764 - PubMed
  124. Wang JF, Liu ZY, Groopman JE (1998) The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood 92(3):756–764 - PubMed
  125. Werner N, Nickenig G (2006) Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol 26(2):257–266. https://doi.org/10.1161/01.ATV.0000198239.41189.5d - PubMed
  126. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353(10):999–1007. https://doi.org/10.1056/NEJMoa043814 - PubMed
  127. West DJ, Campbell MD, Gonzalez JT, Walker M, Stevenson EJ, Ahmed FW, Wijaya S, Shaw JA, Weaver JU (2015) The inflammation, vascular repair and injury responses to exercise in fit males with and without Type 1 diabetes: an observational study. Cardiovasc Diabetol 14:71. https://doi.org/10.1186/s12933-015-0235-y - PubMed
  128. Widlansky ME, Gokce N, Keaney JF Jr, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42(7):1149–1160 - PubMed
  129. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I, Group ESCSD (2018) 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 39(33):3021–3104. https://doi.org/10.1093/eurheartj/ehy339 - PubMed
  130. Xia WH, Li J, Su C, Yang Z, Chen L, Wu F, Zhang YY, Yu BB, Qiu YX, Wang SM, Tao J (2012) Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men. Aging Cell 11(1):111–119. https://doi.org/10.1111/j.1474-9726.2011.00758.x - PubMed
  131. Zhou F, Zhou Y, Yang M, Wen J, Dong J, Tan W (2018) Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis. Cancer Manag Res 10:447–464. https://doi.org/10.2147/CMAR.S157837 - PubMed

Publication Types