Display options
Share it on

Int J Mol Sci. 2021 Dec 27;23(1). doi: 10.3390/ijms23010261.

Effect of Low-Dose Ionizing Radiation on the Expression of Mitochondria-Related Genes in Human Mesenchymal Stem Cells.

International journal of molecular sciences

Svetlana V Kostyuk, Elena V Proskurnina, Marina S Konkova, Margarita S Abramova, Andrey A Kalianov, Elizaveta S Ershova, Vera L Izhevskaya, Sergey I Kutsev, Natalia N Veiko

Affiliations

  1. Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia.

PMID: 35008689 PMCID: PMC8745621 DOI: 10.3390/ijms23010261

Abstract

The concept of hormesis describes a phenomenon of adaptive response to low-dose ionizing radiation (LDIR). Similarly, the concept of mitohormesis states that the adaptive program in mitochondria is activated in response to minor stress effects. The mechanisms of hormesis effects are not clear, but it is assumed that they can be mediated by reactive oxygen species. Here, we studied effects of LDIR on mitochondria in mesenchymal stem cells. We have found that X-ray radiation at a dose of 10 cGy as well as oxidized fragments of cell-free DNA (cfDNA) at a concentration of 50 ng/mL resulted in an increased expression of a large number of genes regulating the function of the mitochondrial respiratory chain complexes in human mesenchymal stem cells (MSC). Several genes remained upregulated within hours after the exposure. Both X-ray radiation and oxidized cfDNA resulted in upregulation of

Keywords: cell-free DNA; human mesenchymal stem cells; low-dose ionizing radiation; mitochondria; mitohormesis

References

  1. Cell Metab. 2005 Jun;1(6):393-9 - PubMed
  2. Biophys J. 1999 Jan;76(1 Pt 1):469-77 - PubMed
  3. Oxid Med Cell Longev. 2016;2016:4350965 - PubMed
  4. Cell Stem Cell. 2013 Oct 3;13(4):483-91 - PubMed
  5. Antioxid Redox Signal. 2017 Sep 20;27(9):596-598 - PubMed
  6. Nature. 2006 Jun 29;441(7097):1080-6 - PubMed
  7. Dose Response. 2018 Jul 01;16(3):1559325818779651 - PubMed
  8. Hum Exp Toxicol. 2002 Feb;21(2):91-7 - PubMed
  9. Exp Gerontol. 2010 Jun;45(6):410-8 - PubMed
  10. Sci Rep. 2016 Oct 17;6:35181 - PubMed
  11. Oncotarget. 2015 Apr 10;6(10):8155-66 - PubMed
  12. Oxid Med Cell Longev. 2018 Feb 25;2018:8587475 - PubMed
  13. Nat Commun. 2013;4:2789 - PubMed
  14. Stem Cells. 2018 Nov;36(11):1789 - PubMed
  15. Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):2988-2993 - PubMed
  16. Hum Mol Genet. 2014 Mar 15;23(6):1453-66 - PubMed
  17. Int J Cell Biol. 2013;2013:742923 - PubMed
  18. Cancer Lett. 2012 Dec 31;327(1-2):48-60 - PubMed
  19. J Cell Sci. 2010 Aug 1;123(Pt 15):2533-42 - PubMed
  20. Mutagenesis. 2008 May;23(3):143-51 - PubMed
  21. PLoS One. 2012;7(12):e50048 - PubMed
  22. Stem Cells. 2018 Aug;36(8):1146-1153 - PubMed
  23. Front Cell Dev Biol. 2020 Dec 14;8:584497 - PubMed
  24. Cell Stress. 2018 Oct 08;2(10):253-274 - PubMed
  25. Expert Opin Biol Ther. 2012 Jun;12 Suppl 1:S85-97 - PubMed
  26. Int J Radiat Biol. 2015 Jan;91(1):13-27 - PubMed
  27. Dose Response. 2014 Jan 31;12(2):288-341 - PubMed
  28. Mutat Res. 2012 Jan 3;729(1-2):52-60 - PubMed
  29. Oxid Med Cell Longev. 2013;2013:649747 - PubMed
  30. Mol Cell. 2012 Oct 26;48(2):158-67 - PubMed
  31. Radiat Res. 2007 Jul;168(1):134-42 - PubMed
  32. Cell Metab. 2007 Oct;6(4):280-93 - PubMed
  33. Cell Death Dis. 2018 Nov 7;9(11):1122 - PubMed
  34. Int J Mol Sci. 2020 Sep 11;21(18): - PubMed
  35. J Nucl Med Technol. 2015 Dec;43(4):242-6 - PubMed
  36. Radiology. 2011 Oct;261(1):193-8 - PubMed
  37. Biol Chem. 2012 Jul;393(7):547-64 - PubMed
  38. Stem Cells. 2011 Sep;29(9):1315-21 - PubMed
  39. J Neurochem. 2016 Oct;139 Suppl 1:216-231 - PubMed
  40. Oxid Med Cell Longev. 2017;2017:9515809 - PubMed
  41. Compr Physiol. 2015 Dec 15;6(1):507-26 - PubMed
  42. Adv Exp Med Biol. 2016;924:109-112 - PubMed
  43. Biomed Rep. 2018 Aug;9(2):99-111 - PubMed
  44. EMBO Rep. 2020 Jun 4;21(6):e50094 - PubMed

Publication Types

Grant support