Display options
Share it on

Int J Mol Sci. 2021 Dec 28;23(1). doi: 10.3390/ijms23010286.

In Vitro Investigation of Binding Interactions between Albumin-Gliclazide Model and Typical Hypotensive Drugs.

International journal of molecular sciences

Ewa Zurawska-Plaksej, Rafal Wiglusz, Agnieszka Piwowar, Katarzyna Wiglusz

Affiliations

  1. Department of Toxicology, Wroclaw Medical University, 50-556 Wroclaw, Poland.
  2. Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland.
  3. Department of Analytical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland.

PMID: 35008711 PMCID: PMC8745505 DOI: 10.3390/ijms23010286

Abstract

Type 2 diabetes management usually requires polytherapy, which increases the risk of drug-to-drug interactions. Among the multiple diabetes comorbidities, hypertension is the most prevalent. This study aimed to investigate the binding interactions between the model protein, bovine albumin, and the hypoglycemic agent gliclazide (GLICL) in the presence of typical hypotensive drugs: quinapril hydrochloride (QUI), valsartan (VAL), furosemide (FUR), amlodipine besylate (AML), and atenolol (ATN). Spectroscopic techniques (fluorescence quenching, circular dichroism) and thermodynamic experiments were employed. The binding of the gliclazide to the albumin molecule was affected by the presence of an additional drug ligand, which was reflected by the reduced binding constant of the BSA-DRUG-GLICL system. This may indicate a possible GLICL displacement and its enhanced pharmacological effect, as manifested in clinical practice. The analysis of the thermodynamic parameters indicated the spontaneity of the reaction and emphasized the role of hydrogen bonding and van der Waals forces in these interactions. The secondary structure of the BSA remained almost unaffected.

Keywords: albumin–drug interactions; amlodipine; atenolol; bovine serum albumin; furosemide; gliclazide; hypertension; quinapril; type 2 diabetes; valsartan

References

  1. Int J Mol Sci. 2016 Jan 26;17(2): - PubMed
  2. Mol Pharm. 2013 May 6;10(5):1668-82 - PubMed
  3. J Biomol Struct Dyn. 2018 Apr;36(5):1095-1107 - PubMed
  4. PLoS One. 2014 Feb 12;9(2):e82880 - PubMed
  5. RSC Med Chem. 2021 Aug 9;12(11):1826-1838 - PubMed
  6. J Pharm Bioallied Sci. 2017 Oct-Dec;9(4):221-228 - PubMed
  7. Diabetes Care. 2017 Sep;40(9):1273-1284 - PubMed
  8. Cardiovasc Diabetol. 2018 Jun 8;17(1):83 - PubMed
  9. Diabetes Res Clin Pract. 2018 Sep;143:1-14 - PubMed
  10. J Pharm Anal. 2019 Aug;9(4):274-283 - PubMed
  11. Bioinform Biol Insights. 2021 Jul 7;15:11779322211030364 - PubMed
  12. J Pharm Biomed Anal. 2018 Feb 20;150:452-459 - PubMed
  13. Molecules. 2021 Jun 24;26(13): - PubMed
  14. Hepatology. 2005 Jun;41(6):1211-9 - PubMed
  15. Can J Cardiol. 2018 May;34(5):575-584 - PubMed
  16. Spectrochim Acta A Mol Biomol Spectrosc. 2010 Jun;76(1):6-11 - PubMed
  17. Diabetes Ther. 2020 Aug;11(Suppl 2):33-48 - PubMed
  18. J Am Coll Cardiol. 2021 Apr 13;77(14):1837-1840 - PubMed
  19. J Fluoresc. 2008 Mar;18(2):433-42 - PubMed
  20. J Res Med Sci. 2013 Jul;18(7):601-10 - PubMed
  21. Biochemistry. 1981 May 26;20(11):3096-102 - PubMed
  22. J Health Popul Nutr. 2009 Feb;27(1):20-30 - PubMed
  23. Diabetes Care. 2011 May;34 Suppl 2:S231-5 - PubMed
  24. Eur J Clin Pharmacol. 1978 May 17;13(2):81-9 - PubMed
  25. Spectrochim Acta A Mol Biomol Spectrosc. 2018 Jan 15;189:625-633 - PubMed
  26. Ther Adv Endocrinol Metab. 2016 Apr;7(2):69-83 - PubMed
  27. Spectrochim Acta A Mol Biomol Spectrosc. 2016 Mar 5;156:155-63 - PubMed
  28. Adv Protein Chem. 1994;45:153-203 - PubMed
  29. J Biomol Struct Dyn. 2017 Aug;35(10):2211-2223 - PubMed
  30. Hypertension. 2017 Jul;70(1):103-110 - PubMed

Publication Types

Grant support