Display options
Share it on

Mol Oncol. 2021 Aug;15(8):2026-2045. doi: 10.1002/1878-0261.12951. Epub 2021 May 01.

Detection of phenotype-specific therapeutic vulnerabilities in breast cells using a CRISPR loss-of-function screen.

Molecular oncology

Anna Barkovskaya, Craig M Goodwin, Kotryna Seip, Bylgja Hilmarsdottir, Solveig Pettersen, Clint Stalnecker, Olav Engebraaten, Eirikur Briem, Channing J Der, Siver A Moestue, Thorarinn Gudjonsson, Gunhild M Maelandsmo, Lina Prasmickaite

Affiliations

  1. Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.
  2. Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
  3. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA.
  4. Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
  5. Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland.
  6. Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
  7. Department of Oncology, Oslo University Hospital, Norway.
  8. Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland.
  9. Department of Health Sciences, Nord University, Bodø, Norway.
  10. Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland.
  11. Faculty of Health Sciences, Institute of Medical Biology, The Arctic University of Norway - University of Tromsø, Norway.

PMID: 33759347 PMCID: PMC8333781 DOI: 10.1002/1878-0261.12951

Abstract

Cellular phenotype plasticity between the epithelial and mesenchymal states has been linked to metastasis and heterogeneous responses to cancer therapy, and remains a challenge for the treatment of triple-negative breast cancer (TNBC). Here, we used isogenic human breast epithelial cell lines, D492 and D492M, representing the epithelial and mesenchymal phenotypes, respectively. We employed a CRISPR-Cas9 loss-of-function screen targeting a 2240-gene 'druggable genome' to identify phenotype-specific vulnerabilities. Cells with the epithelial phenotype were more vulnerable to the loss of genes related to EGFR-RAS-MAPK signaling, while the mesenchymal-like cells had increased sensitivity to knockout of G

© 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Keywords: CRISPR knockout screen; actionable targets; epithelial-mesenchymal transition; phenotype plasticity; therapeutic vulnerabilities; triple-negative breast cancer

References

  1. Oncotarget. 2017 Dec 15;9(6):7023-7035 - PubMed
  2. Nat Rev Mol Cell Biol. 2019 Feb;20(2):69-84 - PubMed
  3. Genome Biol. 2015 Dec 16;16:281 - PubMed
  4. Cell Stem Cell. 2019 Jan 3;24(1):65-78 - PubMed
  5. PLoS Genet. 2011 Aug;7(8):e1002218 - PubMed
  6. J Cell Biol. 2000 Sep 4;150(5):975-88 - PubMed
  7. Nat Methods. 2007 Oct;4(10):847-9 - PubMed
  8. Cell. 2008 May 16;133(4):704-15 - PubMed
  9. Mol Cancer Ther. 2004 Sep;3(9):1079-90 - PubMed
  10. Cancer Sci. 2012 Sep;103(9):1665-71 - PubMed
  11. Cell. 2012 Apr 13;149(2):274-93 - PubMed
  12. Nat Genet. 2020 Apr;52(4):408-417 - PubMed
  13. Cell Chem Biol. 2016 Jun 23;23(6):678-88 - PubMed
  14. JAMA Oncol. 2017 Jun 1;3(6):793-800 - PubMed
  15. Nat Rev Cancer. 2016 Nov;16(11):732-749 - PubMed
  16. Science. 2014 Jan 3;343(6166):84-87 - PubMed
  17. PLoS One. 2011;6(9):e23833 - PubMed
  18. Cells Tissues Organs. 2011;193(1-2):23-40 - PubMed
  19. J Cancer. 2018 Mar 8;9(7):1145-1151 - PubMed
  20. Cancer Res. 2008 Feb 15;68(4):989-97 - PubMed
  21. Cell Death Dis. 2013 Oct 24;4:e875 - PubMed
  22. Cancer. 1996 Feb 1;77(3):474-82 - PubMed
  23. Clin Breast Cancer. 2015 Oct;15(5):e287-92 - PubMed
  24. Genes Dev. 2002 Mar 15;16(6):693-706 - PubMed
  25. Science. 2015 Nov 27;350(6264):1096-101 - PubMed
  26. Cold Spring Harb Perspect Med. 2017 Mar 1;7(3): - PubMed
  27. J Mammary Gland Biol Neoplasia. 2019 Jun;24(2):139-147 - PubMed
  28. Nat Commun. 2018 Sep 19;9(1):3815 - PubMed
  29. Cell Rep. 2016 Oct 18;17(4):1193-1205 - PubMed
  30. Ann Oncol. 2019 Jul 1;30(7):1051-1060 - PubMed
  31. Nature. 2019 Apr;568(7753):511-516 - PubMed
  32. Oncotarget. 2016 Jul 26;7(30):48206-48219 - PubMed
  33. FEBS Lett. 2012 Jul 4;586(14):1959-70 - PubMed
  34. Front Mol Biosci. 2020 Apr 23;7:71 - PubMed
  35. Genome Biol. 2014;15(12):554 - PubMed
  36. J Exp Clin Cancer Res. 2019 Mar 4;38(1):112 - PubMed
  37. J Cell Biol. 2007 Jul 30;178(3):437-51 - PubMed
  38. Int J Biochem Cell Biol. 2018 Oct;103:99-104 - PubMed
  39. Adv Ther. 2013 Oct;30(10):870-84 - PubMed
  40. Nat Commun. 2015 Feb 11;6:6139 - PubMed
  41. Nature. 2015 Nov 26;527(7579):472-6 - PubMed
  42. Oncogene. 2019 Jan;38(4):455-468 - PubMed
  43. J Clin Invest. 2013 Mar;123(3):1348-58 - PubMed
  44. Cell. 2015 Dec 3;163(6):1515-26 - PubMed
  45. Nat Rev Cancer. 2003 May;3(5):330-8 - PubMed
  46. Cell Mol Life Sci. 2004 Oct;61(19-20):2523-34 - PubMed
  47. JAMA Oncol. 2019 Jan 1;5(1):e183773 - PubMed
  48. Cancer Lett. 2017 Jun 28;396:117-129 - PubMed
  49. J Clin Oncol. 2018 Aug 10;36(23):2433-2443 - PubMed
  50. Nat Genet. 2017 Dec;49(12):1779-1784 - PubMed
  51. Drug Des Devel Ther. 2015 Feb 17;9:1027-62 - PubMed
  52. Oncol Lett. 2018 Aug;16(2):2533-2538 - PubMed
  53. Cancers (Basel). 2020 Apr 30;12(5): - PubMed
  54. PLoS Comput Biol. 2016 Jun 02;12(6):e1004924 - PubMed
  55. Open Biol. 2017 Feb;7(2): - PubMed
  56. Pharmacol Ther. 2017 Sep;177:23-31 - PubMed
  57. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 - PubMed
  58. Int J Biol Sci. 2014 Jan 20;10(2):171-80 - PubMed
  59. CA Cancer J Clin. 2018 Nov;68(6):394-424 - PubMed
  60. N Engl J Med. 2017 Jun 1;376(22):2147-2159 - PubMed
  61. Cancer Cell. 2012 Feb 14;21(2):227-39 - PubMed
  62. Sci Signal. 2019 Feb 26;12(570): - PubMed
  63. Cell Rep. 2020 Jun 16;31(11):107764 - PubMed
  64. Oncogene. 2016 Aug 11;35(32):4244-55 - PubMed
  65. Int J Oncol. 2017 Mar;50(3):893-902 - PubMed

Publication Types

Grant support