Display options
Share it on

Int J Mol Sci. 2021 Dec 31;23(1). doi: 10.3390/ijms23010443.

Oxidized Substrates of APEH as a Tool to Study the Endoprotease Activity of the Enzyme.

International journal of molecular sciences

Annamaria Sandomenico, Marta Gogliettino, Emanuela Iaccarino, Carmela Fusco, Andrea Caporale, Menotti Ruvo, Gianna Palmieri, Ennio Cocca

Affiliations

  1. Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), 80134 Napoli, Italy.
  2. Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), 80131 Napoli, Italy.
  3. Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy.

PMID: 35008880 PMCID: PMC8745263 DOI: 10.3390/ijms23010443

Abstract

APEH is a ubiquitous and cytosolic serine protease belonging to the prolyl oligopeptidase (POP) family, playing a critical role in the processes of degradation of proteins through both exo- and endopeptidase events. Endopeptidase activity has been associated with protein oxidation; however, the actual mechanisms have yet to be elucidated. We show that a synthetic fragment of GDF11 spanning the region 48-64 acquires sensitivity to the endopeptidase activity of APEH only when the methionines are transformed into the corresponding sulphoxide derivatives. The data suggest that the presence of sulphoxide-modified methionines is an important prerequisite for the substrates to be processed by APEH and that the residue is crucial for switching the enzyme activity from exo- to endoprotease. The cleavage occurs on residues placed on the C-terminal side of Met(O), with an efficiency depending on the methionine adjacent residues, which thereby may play a crucial role in driving and modulating APEH endoprotease activity.

Keywords: APEH; endoproteolytic activity; oxidative stress; oxidized methionine; oxidized substrates

References

  1. Planta. 2012 Aug;236(2):427-36 - PubMed
  2. Methods Enzymol. 1994;244:227-31 - PubMed
  3. Curr Opin Chem Biol. 2003 Aug;7(4):496-504 - PubMed
  4. Front Pharmacol. 2017 Jul 25;8:483 - PubMed
  5. PLoS One. 2015 May 06;10(5):e0125594 - PubMed
  6. J Pharm Biomed Anal. 2000 Jan;21(6):1093-7 - PubMed
  7. DNA Repair (Amst). 2017 Oct;58:52-61 - PubMed
  8. Spectrochim Acta A Mol Biomol Spectrosc. 2006 Mar 1;63(3):609-13 - PubMed
  9. J Biochem. 2000 Jun;127(6):1087-93 - PubMed
  10. Mol Biol Rep. 2021 Feb;48(2):1505-1519 - PubMed
  11. Phys Chem Chem Phys. 2019 Apr 17;21(16):8445-8456 - PubMed
  12. J Biol Chem. 1992 Feb 25;267(6):3811-8 - PubMed
  13. Acta Crystallogr D Biol Crystallogr. 2015 Mar;71(Pt 3):461-72 - PubMed
  14. FEBS J. 2014 Jan;281(1):401-15 - PubMed
  15. Biochem Biophys Res Commun. 2004 Nov 5;324(1):140-6 - PubMed
  16. J Biochem. 1998 Dec 1;124(6):1077-85 - PubMed
  17. Cell Mol Life Sci. 2002 Feb;59(2):349-62 - PubMed
  18. Biochem Biophys Res Commun. 2003 May 16;304(4):766-71 - PubMed
  19. PLoS One. 2013 Nov 19;8(11):e80900 - PubMed
  20. Int J Biochem Cell Biol. 2007;39(1):44-84 - PubMed
  21. J Pept Sci. 2017 Apr;23(4):272-281 - PubMed
  22. Biochem J. 2016 Apr 1;473(7):805-25 - PubMed
  23. Free Radic Biol Med. 2021 Mar;165:360-367 - PubMed
  24. PLoS One. 2011;6(10):e25888 - PubMed
  25. Nature. 2021 Aug;596(7873):583-589 - PubMed
  26. Structure. 2004 Aug;12(8):1481-8 - PubMed
  27. Biol Pharm Bull. 2009 Sep;32(9):1632-5 - PubMed
  28. Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11110-3 - PubMed
  29. Int J Mol Sci. 2016 Sep 23;17(10): - PubMed
  30. Biochimie. 2005 Aug;87(8):673-85 - PubMed
  31. Mol Neurodegener. 2009 Jul 23;4:33 - PubMed
  32. Proteins. 2007 Apr 1;67(1):209-18 - PubMed
  33. Cell. 1998 Jul 24;94(2):161-70 - PubMed
  34. Biochem Biophys Res Commun. 1998 Jun 9;247(1):136-41 - PubMed
  35. J Alzheimers Dis. 2017;60(3):1097-1106 - PubMed

Publication Types

Grant support