Display options
Share it on

Int J Mol Sci. 2022 Jan 04;23(1). doi: 10.3390/ijms23010543.

The Interplay of Conjugation and Metal Coordination in Tuning the Electron Transfer Abilities of NTA-Graphene Based Interfaces.

International journal of molecular sciences

Magdalena Kaźmierczak, Bartosz Trzaskowski, Silvio Osella

Affiliations

  1. Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.

PMID: 35008968 PMCID: PMC8745182 DOI: 10.3390/ijms23010543

Abstract

An artificial leaf is a concept that not only replicates the processes taking place during natural photosynthesis but also provides a source of clean, renewable energy. One important part of such a device are molecules that stabilize the connection between the bioactive side and the electrode, as well as tune the electron transfer between them. In particular, nitrilotriacetic acid (NTA) derivatives used to form a self-assembly monolayer chemisorbed on a graphene monolayer can be seen as a prototypical interface that can be tuned to optimize the electron transfer. In the following work, interfaces with modifications of the metal nature, backbone saturation, and surface coverage density are presented by means of theoretical calculations. Effects of the type of the metal and the surface coverage density on the electronic properties are found to be key to tuning the electron transfer, while only a minor influence of backbone saturation is present. For all of the studied interfaces, the charge transfer flow goes from graphene to the SAM. We suggest that, in light of the strength of electron transfer, Co

Keywords: DFT; charge transfer; chemisorption; graphene; self-assembled monolayer; work function

References

  1. Anal Chem. 2013 Mar 19;85(6):3246-54 - PubMed
  2. Acc Chem Res. 2008 Jun;41(6):721-9 - PubMed
  3. Analyst. 2010 Nov;135(11):2768-78 - PubMed
  4. Biosens Bioelectron. 2002 Jan;17(1-2):1-12 - PubMed
  5. J Am Chem Soc. 2009 May 20;131(19):6660-1 - PubMed
  6. Chem Soc Rev. 2017 Jul 31;46(15):4530-4571 - PubMed
  7. Nat Mater. 2007 Mar;6(3):183-91 - PubMed
  8. J Phys Condens Matter. 2009 Sep 30;21(39):395502 - PubMed
  9. Chem Commun (Camb). 2013 Oct 25;49(83):9526-39 - PubMed
  10. Chem Soc Rev. 2010 Nov;39(11):4146-57 - PubMed
  11. Nanoscale. 2015 Apr 28;7(16):6909-23 - PubMed
  12. Phys Rev Lett. 2008 Apr 4;100(13):136406 - PubMed
  13. Bioconjug Chem. 2009 Aug 19;20(8):1667-72 - PubMed
  14. Langmuir. 2017 Apr 18;33(15):3588-3593 - PubMed
  15. Phys Rev B Condens Matter. 1995 May 15;51(19):12947-12957 - PubMed
  16. Analyst. 2020 Mar 2;145(5):1550-1562 - PubMed
  17. Biosens Bioelectron. 2016 May 15;79:850-60 - PubMed
  18. Biosens Bioelectron. 2016 Feb 15;76:195-212 - PubMed
  19. Chem Soc Rev. 2011 Jul;40(7):3564-76 - PubMed
  20. J Chem Phys. 2020 Mar 31;152(12):124101 - PubMed
  21. Chem Rev. 2010 Nov 10;110(11):6446-73 - PubMed
  22. J Am Chem Soc. 2015 Mar 4;137(8):2800-3 - PubMed
  23. Phys Rev Lett. 2015 Jan 30;114(4):047403 - PubMed
  24. Int J Biochem Cell Biol. 2015 Sep;66:37-44 - PubMed

Publication Types

Grant support