Display options
Share it on

Biol Trace Elem Res. 2022 Mar;200(3):1140-1155. doi: 10.1007/s12011-021-02731-0. Epub 2021 Apr 24.

The Antioxidant Role of Selenium via GPx1 and GPx4 in LPS-Induced Oxidative Stress in Bovine Endometrial Cells.

Biological trace element research

Samson O Adeniran, Peng Zheng, Rui Feng, Elikanah O Adegoke, Fushuo Huang, Mingjun Ma, Ziming Wang, Olamigoke O Ifarajimi, Xiaoyu Li, Guixue Zhang

Affiliations

  1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China.
  2. Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea.
  3. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China. [email protected].

PMID: 33895964 DOI: 10.1007/s12011-021-02731-0

Abstract

This study investigated the antioxidant role of selenium (Se) in the form of selenomethionine (SLM) in LPS-induced oxidative stress via the glutathione peroxidase (GPx) enzymes and the Nrf2/HO-1 transcription factor. The impact of serum supplementation in culture media on GPxs was also studied. The bovine uterus is constantly exposed to exogenous pathogens postpartum, and the endometrium is the first contact against bacteria invasion. Endometritis is an inflammation of the endometrium and is brought about by bacterial lipopolysaccharide capable of inducing oxidative stress. The BEND cells were supplemented at the point of seeding with the following SLM concentrations 0, 100, 500, and 1000 nM for 48 h. BEND cells, cultured with or without SLM (100 nM), were initially incubated for 48 h, and then, we serum starved the SLM group for 24, 48, and 72 h. Similarly, an assay involving serum volume (0, 2, 5, and 10%) supplementation in culture media (v/v) with or without SLM (100 nM) was performed for 48 h. The BEND cells were also seeded into four experimental groups and cultured for an initial 48 h as follows: control, LPS (20 μg/mL), SLM (100 nM), and SLM + LPS groups followed by 6-h LPS treatment. The role of SLM in modulating the expressions of GPx1 and GPx4 and the Nrf2 transcription factor-related genes was assessed using qRT-PCR and Western blot techniques. The results showed serum starvation in the presence of SLM supplementation decreased the expression of GPx1 enzyme but increased GPx4 compared to the control. The addition of SLM to cell culture media in an FBS limiting condition improved the expressions of both GPx1 and GPx4. SLM supplementation promoted GPx enzymes' expressions in a serum-free media (0%) and at 2% FBS in media. However, it did not improve their expressions at 10% FBS in media than the untreated groups. Together, our data show the protective role of Se by regulating the expressions of GPx1 and GPx4 enzymes in BEND cells. It also shows that SLM promoted the expression of Nrf2 transcription factor-related genes at both the mRNA and protein levels in BEND cells during LPS stimulation.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Glutathione peroxidases (GPxs); Lipopolysaccharide; Nrf2; Oxidative stress; Selenium

References

  1. Sheldon IM, Cronin JG, Bromfield JJ (2019) Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle. Annu Rev Anim Biosci 7:361–384. https://doi.org/10.1146/annurev-animal-020518-115227 - PubMed
  2. Siqueira LC, Favaretto B, Moraes BT, de Freitas VO, Bicalho RC, Horn RC, Bassuino DM, Wolkmer P (2020) Bovine endometritis and the inflammatory peripheral cholinergic system. Appl Biochem Biotechnol 190(4):1242–1256. https://doi.org/10.1007/s12010-019-03157-0 - PubMed
  3. Sheldon IM, Cronin J, Goetze L, Donofrio G, Schuberth HJ (2009) Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol Reprod 81(6):1025–1032. https://doi.org/10.1095/biolreprod.109.077370 - PubMed
  4. Herath S, Lilly ST, Santos NR, Gilbert RO, Goetze L, Bryant CE, White JO, Cronin J, Sheldon IM (2009) Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility. Reprod Biol Endocrinol 7:55. https://doi.org/10.1186/1477-7827-7-55 - PubMed
  5. Herath S, Fischer DP, Werling D, Williams EJ, Lilly ST, Dobson H, Bryant CE, Sheldon IM (2006) Expression and function of Toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology 147(1):562–570. https://doi.org/10.1210/en.2005-1113 - PubMed
  6. Surai PF, Kochish II, Fisinin VI, Juniper DT (2019) Revisiting oxidative stress and the use of organic selenium in dairy cow nutrition. Animals 9(7). https://doi.org/10.3390/ani9070462 - PubMed
  7. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001 - PubMed
  8. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2—an update. Free Radic Biol Med 66:36–44. https://doi.org/10.1016/j.freeradbiomed.2013.02.008 - PubMed
  9. Suttle NF (2010) Mineral nutrition of livestock. CABI - PubMed
  10. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R (2017) A summary of new findings on the biological effects of selenium in selected animal species-a critical review. Int J Mol Sci 18(10). https://doi.org/10.3390/ijms18102209 - PubMed
  11. Combs GF, Gray WP (1998) Chemopreventive agents: selenium. Pharmacol Ther 79(3):179–192. https://doi.org/10.1016/S0163-7258(98)00014-X - PubMed
  12. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241. https://doi.org/10.1016/S0140-6736(00)02490-9 - PubMed
  13. Adegoke EO, Wang X, Wang H, Wang C, Zhang H, Zhang G (2018) Selenium (Na2SeO3) Upregulates expression of immune genes and blood–testis barrier constituent proteins of bovine Sertoli cell in vitro. Biol Trace Elem Res 185(2):332–343. https://doi.org/10.1007/s12011-018-1248-7 - PubMed
  14. Qazi IH, Angel C, Yang H, Pan B, Zoidis E, Zeng CJ, Han H, Zhou GB (2018) Selenium, selenoproteins, and female reproduction: a review. Molecules 23(12). https://doi.org/10.3390/molecules23123053 - PubMed
  15. Andrieu S (2008) Is there a role for organic trace element supplements in transition cow health? Vet J 176(1):77–83. https://doi.org/10.1016/j.tvjl.2007.12.022 - PubMed
  16. Shetty SP, Shah R, Copeland PR (2014) Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P. J Biol Chem 289(36):25317–25326. https://doi.org/10.1074/jbc.M114.590430 - PubMed
  17. Stolwijk JM, Falls-Hubert KC, Searby CC, Wagner BA, Buettner GR (2020) Simultaneous detection of the enzyme activities of GPx1 and GPx4 guide optimization of selenium in cell biological experiments. Redox Biol 32:101518. https://doi.org/10.1016/j.redox.2020.101518 - PubMed
  18. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science (New York, NY) 300(5624):1439–1443. https://doi.org/10.1126/science.1083516 - PubMed
  19. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16(7):705–743. https://doi.org/10.1089/ars.2011.4145 - PubMed
  20. Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 agaisnt dietary necrotic liver degeneration. J Am Chem Soc 79(12):3292–3293. https://doi.org/10.1021/ja01569a087 - PubMed
  21. Köhrle J (2005) Selenium and the control of thyroid hormone metabolism. Thyroid 15(8):841–853. https://doi.org/10.1089/thy.2005.15.841 - PubMed
  22. Montgomery MK, Buttemer WA, Hulbert AJ (2012) Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage. Exp Gerontol 47(3):211–222. https://doi.org/10.1016/j.exger.2011.11.014 - PubMed
  23. Fu X, Chen D, Ma Y, Yuan W, Zhu L (2019) Bovine herpesvirus 1 productive infection led to inactivation of Nrf2 signaling through diverse approaches. Oxidative Med Cell Longev 2019:4957878–4957814. https://doi.org/10.1155/2019/4957878 - PubMed
  24. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47(9):1304–1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035 - PubMed
  25. Hayes JD, Chanas SA, Henderson CJ, McMahon M, Sun C, Moffat GJ, Wolf CR, Yamamoto M (2000) The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem Soc Trans 28(2):33–41. https://doi.org/10.1042/bst0280033 - PubMed
  26. Choi AM, Alam J (1996) Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. 15(1):9–19. https://doi.org/10.1165/ajrcmb.15.1.8679227 - PubMed
  27. Flohe L, Günzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32(1):132–134. https://doi.org/10.1016/0014-5793(73)80755-0 - PubMed
  28. Lubos E, Loscalzo J, Handy DE (2010) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15(7):1957–1997. https://doi.org/10.1089/ars.2010.3586 - PubMed
  29. Shi H, Yan S, Guo Y, Shi B, Guo X (2018) The pre-protective effect of vitamin A on LPS-induced oxidative stress of bovine mammary epithelial cells. Ital J Anim Sci 17(4):959–966. https://doi.org/10.1080/1828051X.2018.1453757 - PubMed
  30. Adegoke EO, Xue W, Machebe NS, Adeniran SO, Hao W, Chen W, Han Z, Guixue Z, Peng Z (2018) Sodium selenite inhibits mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB and mitochondrial signaling pathways blockage. Ecotoxicol Environ Saf 166:165–175. https://doi.org/10.1016/j.ecoenv.2018.09.073 - PubMed
  31. Wang X, Adegoke EO, Ma M, Huang F, Zhang H, Adeniran SO, Zheng P, Zhang G (2019) Influence of Wilms’ tumor suppressor gene WT1 on bovine Sertoli cells polarity and tight junctions via non-canonical WNT signaling pathway. Theriogenology 138:84–93. https://doi.org/10.1016/j.theriogenology.2019.07.007 - PubMed
  32. Huszenicza G, Fodor M, Gacs M, Kulcsar M, Dohmen M, Vamos M, Porkolab L, Kegl T, Bartyik J, Lohuis J, Janosi S, Szita G (1999) Uterine bacteriology, resumption of cyclic ovarian activity and fertility in postpartum cows kept in large-scale dairy herds. 34(3–4):237–245. https://doi.org/10.1111/j.1439-0531.1999.tb01246.x - PubMed
  33. Williams EJ, Fischer DP, Pfeiffer DU, England GCW, Noakes DE, Dobson H, Sheldon IM (2005) Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the immune response in cattle. Theriogenology 63(1):102–117. https://doi.org/10.1016/j.theriogenology.2004.03.017 - PubMed
  34. Bicalho MLS, Machado VS, Higgins CH, Lima FS, Bicalho RC (2017) Genetic and functional analysis of the bovine uterine microbiota. Part I: Metritis versus healthy cows. J Dairy Sci 100(5):3850–3862. https://doi.org/10.3168/jds.2016-12058 - PubMed
  35. Oguejiofor CF, Cheng Z, Wathes DC (2017) Regulation of innate immunity within the bovine endometrium during infection. CAB Rev 12(051):1–14. https://doi.org/10.1079/PAVSNNR201712051 - PubMed
  36. Fredriksen B, Press CM, Løken T, Ødegaard SA (1999) Distribution of viral antigen in uterus, placenta and foetus of cattle persistently infected with bovine virus diarrhoea virus. Vet Microbiol 64(2):109–122. https://doi.org/10.1016/S0378-1135(98)00263-6 - PubMed
  37. Donofrio G, Franceschi V, Capocefalo A, Cavirani S, Sheldon IM (2009) Isolation and characterization of bovine herpesvirus 4 (BoHV-4) from a cow affected by post partum metritis and cloning of the genome as a bacterial artificial chromosome. Reprod Biol Endocrinol 7(1):83. https://doi.org/10.1186/1477-7827-7-83 - PubMed
  38. Sheldon IM, Rycroft AN, Dogan B, Craven M, Bromfield JJ, Chandler A, Roberts MH, Price SB, Gilbert RO, Simpson KW (2010) Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice. PLoS One 5(2):e9192. https://doi.org/10.1371/journal.pone.0009192 - PubMed
  39. Turner ML, Cronin JG, Healey GD, Sheldon IM (2014) Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology 155(4):1453–1465. https://doi.org/10.1210/en.2013-1822 - PubMed
  40. Wallace LG, Bobe G, Vorachek WR, Dolan BP, Estill CT, Pirelli GJ, Hall JA (2017) Effects of feeding pregnant beef cows selenium-enriched alfalfa hay on selenium status and antibody titers in their newborn calves. J Anim Sci 95(6):2408–2420. https://doi.org/10.2527/jas.2017.1377 - PubMed
  41. Swangchan-Uthai T, Lavender CR, Cheng Z, Fouladi-Nashta AA, Wathes DC (2012) Time course of defense mechanisms in bovine endometrium in response to lipopolysaccharide. Biol Reprod 87(6):135. https://doi.org/10.1095/biolreprod.112.102376 - PubMed
  42. Bidne KL, Dickson MJ, Ross JW, Baumgard LH, Keating AF (2018) Disruption of female reproductive function by endotoxins. Reproduction (Cambridge, England) 155(4):R169–r181. https://doi.org/10.1530/rep-17-0406 - PubMed
  43. Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24(5):1226–1235. https://doi.org/10.1634/stemcells.2005-0117 - PubMed
  44. Leist M, Raab B, Maurer S, Rösick U, Brigelius-Flohé R (1996) Conventional cell culture media do not adequately supply cells with antioxidants and thus facilitate peroxide-induced genotoxicity. Free Radic Biol Med 21(3):297–306. https://doi.org/10.1016/0891-5849(96)00045-7 - PubMed
  45. Spallholz JE, Boylan LM, Larsen HS (1990) Advances in understanding selenium’s role in the immune system. Ann N Y Acad Sci 587:123–139. https://doi.org/10.1111/j.1749-6632.1990.tb00140.x - PubMed
  46. Rashid M-u, Coombs KM (2019) Serum-reduced media impacts on cell viability and protein expression in human lung epithelial cells. J Cell Physiol 234(6):7718–7724. https://doi.org/10.1002/jcp.27890 - PubMed
  47. Shi L, Song R, Yao X, Ren Y (2017) Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro. Theriogenology 93:24–32. https://doi.org/10.1016/j.theriogenology.2017.01.022 - PubMed
  48. Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One 7(3):e33066. https://doi.org/10.1371/journal.pone.0033066 - PubMed
  49. Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 35:109–134. https://doi.org/10.1146/annurev-nutr-071714-034250 - PubMed
  50. Qazi IH, Angel C, Yang H, Zoidis E, Pan B, Wu Z, Ming Z, Zeng CJ, Meng Q, Han H, Zhou G (2019) Role of selenium and selenoproteins in male reproductive function: a review of past and present evidences. Antioxidants (Basel, Switzerland) 8(8). https://doi.org/10.3390/antiox8080268 - PubMed
  51. Zoidis E, Seremelis I, Kontopoulos N, Danezis GP (2018) Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants (Basel, Switzerland) 7(5). https://doi.org/10.3390/antiox7050066 - PubMed
  52. Behne D, Kyriakopoulos A (2001) Mammalian selenium-containing proteins. Annu Rev Nutr 21:453–473. https://doi.org/10.1146/annurev.nutr.21.1.453 - PubMed
  53. Karlenius TC, Shah F, Yu WC, Hawkes HJ, Tinggi U, Clarke FM, Tonissen KF (2011) The selenium content of cell culture serum influences redox-regulated gene expression. BioTechniques 50(5):295–301. https://doi.org/10.2144/000113666 - PubMed
  54. Wydooghe E, Heras S, Dewulf J, Piepers S, Van den Abbeel E, De Sutter P, Vandaele L, Van Soom A (2014) Replacing serum in culture medium with albumin and insulin, transferrin and selenium is the key to successful bovine embryo development in individual culture. Reprod Fertil Dev 26(5):717–724. https://doi.org/10.1071/rd13043 - PubMed
  55. Hara S, Shoji Y, Sakurai A, Yuasa K, Himeno S, Imura N (2001) Effects of selenium deficiency on expression of selenoproteins in bovine arterial endothelial cells. Biol Pharm Bull 24(7):754–759. https://doi.org/10.1248/bpb.24.754 - PubMed
  56. Guo Y, Gong J, Shi B, Guo X, Yan S (2018) Effects of selenium on selenoprotein synthesis and antioxidant parameters of bovine mammary epithelial cells. Czech J Anim Sci 63:313–322. https://doi.org/10.17221/24/2018-CJAS - PubMed
  57. Muller AS, Pallauf J (2002) Down-regulation of GPx1 mRNA and the loss of GPx1 activity causes cellular damage in the liver of selenium-deficient rabbits. J Anim Physiol Anim Nutr 86(9-10):273–287. https://doi.org/10.1046/j.1439-0396.2002.00373.x - PubMed
  58. Pagmantidis V, Bermano G, Villette S, Broom I, Arthur J, Hesketh J (2005) Effects of Se-depletion on glutathione peroxidase and selenoprotein W gene expression in the colon. FEBS Lett 579(3):792–796. https://doi.org/10.1016/j.febslet.2004.12.042 - PubMed
  59. Hariharan S, Dharmaraj S (2020) Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology 28(3):667–695. https://doi.org/10.1007/s10787-020-00690-x - PubMed
  60. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z (2014) Role of selenium in male reproduction - a review. Anim Reprod Sci 146(1-2):55–62. https://doi.org/10.1016/j.anireprosci.2014.01.009 - PubMed
  61. Cerny KL, Anderson L, Burris WR, Rhoads M, Matthews JC, Bridges PJ (2016) Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol. Theriogenology 85(5):800–806. https://doi.org/10.1016/j.theriogenology.2015.10.022 - PubMed
  62. Mehdi Y, Dufrasne I (2016) Selenium in cattle: a review. Molecules 21(4):545. https://doi.org/10.3390/molecules21040545 - PubMed
  63. Yao X, Ei-Samahy MA, Fan L, Zheng L, Jin Y, Pang J, Zhang G, Liu Z, Wang F (2018) In vitro influence of selenium on the proliferation of and steroidogenesis in goat luteinized granulosa cells. Theriogenology 114:70–80. https://doi.org/10.1016/j.theriogenology.2018.03.014 - PubMed
  64. Guo Y, Guo X, Yan S, Zhang B, Shi B (2019) Mechanism underlying the protective effect of selenium on NO-induced oxidative damage in bovine mammary epithelial cells. Biol Trace Elem Res 191(1):104–114. https://doi.org/10.1007/s12011-018-1603-8 - PubMed
  65. Zhang B, Guo Y, Yan S, Guo X, Zhao Y, Shi B (2020) The protective effect of selenium on the lipopolysaccharide-induced oxidative stress and depressed gene expression related to milk protein synthesis in bovine mammary epithelial cells. Biol Trace Elem Res 197(1):141–148. https://doi.org/10.1007/s12011-019-01961-7 - PubMed
  66. Huang Y, Jia Z, Xu Y, Qin M, Feng S (2020) Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways. Genet Mol Biol 43(3):e20190153. https://doi.org/10.1590/1678-4685-gmb-2019-0153 - PubMed
  67. Mavangira V, Sordillo LM (2018) Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Res Vet Sci 116:4–14. https://doi.org/10.1016/j.rvsc.2017.08.002 - PubMed
  68. Ruiz S, Pergola PE, Zager RA, Vaziri ND (2013) Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 83(6):1029–1041. https://doi.org/10.1038/ki.2012.439 - PubMed
  69. Kay HY, Won Yang J, Kim TH, Lee DY, Kang B, Ryu J-H, Jeon R, Kim SG (2010) Ajoene, a stable garlic by-product, has an antioxidant effect through Nrf2-mediated glutamate-cysteine ligase induction in HepG2 cells and primary hepatocytes. J Nutr 140(7):1211–1219. https://doi.org/10.3945/jn.110.121277 - PubMed
  70. Zhang C, Lin J, Ge J, Wang L-L, Li N, Sun X-T, Cao H-B, Li J-L (2017) Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis. Toxicol in Vitro 44:349–356. https://doi.org/10.1016/j.tiv.2017.07.027 - PubMed
  71. Shin D-h, Park H-M, Jung K-A, Choi H-G, Kim J-A, Kim D-D, Kim SG, Kang KW, Ku SK, Kensler TW, Kwak M-K (2010) The NRF2–heme oxygenase-1 system modulates cyclosporin A-induced epithelial–mesenchymal transition and renal fibrosis. Free Radic Biol Med 48(8):1051–1063. https://doi.org/10.1016/j.freeradbiomed.2010.01.021 - PubMed
  72. Gessner DK, Schlegel G, Keller J, Schwarz FJ, Ringseis R, Eder K (2013) Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. J Dairy Sci 96(2):1038–1043. https://doi.org/10.3168/jds.2012-5967 - PubMed
  73. Zeng H (2009) Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules 14(3):1263–1278. https://doi.org/10.3390/molecules14031263 - PubMed
  74. Miranda SG, Purdie NG, Osborne VR, Coomber BL, Cant JP (2011) Selenomethionine increases proliferation and reduces apoptosis in bovine mammary epithelial cells under oxidative stress. J Dairy Sci 94(1):165–173. https://doi.org/10.3168/jds.2010-3366 - PubMed

Publication Types

Grant support