Display options
Share it on

Basic Res Cardiol. 2022 Jan 13;117(1):1. doi: 10.1007/s00395-022-00909-8.

Coronary blood flow in heart failure: cause, consequence and bystander.

Basic research in cardiology

Gerd Heusch

Affiliations

  1. Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany. [email protected].

PMID: 35024969 DOI: 10.1007/s00395-022-00909-8

Abstract

Heart failure is a clinical syndrome where cardiac output is not sufficient to sustain adequate perfusion and normal bodily functions, initially during exercise and in more severe forms also at rest. The two most frequent forms are heart failure of ischemic origin and of non-ischemic origin. In heart failure of ischemic origin, reduced coronary blood flow is causal to cardiac contractile dysfunction, and this is true for stunned and hibernating myocardium, coronary microembolization, myocardial infarction and post-infarct remodeling, possibly also for the takotsubo syndrome. The most frequent form of non-ischemic heart failure is dilated cardiomyopathy, caused by genetic mutations, myocarditis, toxic agents or sustained tachyarrhythmias, where alterations in coronary blood flow result from and contribute to cardiac contractile dysfunction. Hypertrophic cardiomyopathy is caused by genetic mutations but can also result from increased pressure and volume overload (hypertension, valve disease). Heart failure with preserved ejection fraction is characterized by pronounced coronary microvascular dysfunction, the causal contribution of which is however not clear. The present review characterizes the alterations of coronary blood flow which are causes or consequences of heart failure in its different manifestations. Apart from any potentially accompanying coronary atherosclerosis, all heart failure entities share common features of impaired coronary blood flow, but to a different extent: enhanced extravascular compression, impaired nitric oxide-mediated, endothelium-dependent vasodilation and enhanced vasoconstriction to mediators of neurohumoral activation. Impaired coronary blood flow contributes to the progression of heart failure and is thus a valid target for established and novel treatment regimens.

© 2022. The Author(s).

Keywords: Coronary blood flow; Coronary microcirculation; Coronary reserve; Extravascular compression; Heart failure

References

  1. Abdelmoneim SS, Mankad SV, Bernier M, Dhoble A, Hagen ME, Ness SA, Chandrasekaran K, Pellikka PA, Oh JK, Mulvagh SL (2009) Microvascular function in Takotsubo cardiomyopathy with contrast echocardiography: prospective evaluation and review of literature. J Am Soc Echocardiogr 22:1249–1255. https://doi.org/10.1016/j.echo.2009.07.012 - PubMed
  2. Agress CM, Rosenberg MJ, Jacobs HI, Binder MJ, Schneiderman A, Clark WG (1952) Protracted shock in the closed-chest dog following coronary embolization with graded microspheres. Am J Physiol 170:536–549. https://doi.org/10.1152/ajplegacy.1952.170.3.536 - PubMed
  3. Alyono D, Anderson RW, Parrish DG, Dai XZ, Bache RJ (1986) Alterations of myocardial blood flow associated with experimental canine left ventricular hypertrophy secondary to valvular aortic stenosis. Circ Res 58:47–57. https://doi.org/10.1161/01.res.58.1.47 - PubMed
  4. Ambrosio G, Betocchi S, Pace L, Losi MA, Perrone-Filardi P, Soricelli A, Piscione F, Taube J, Squame F, Salvatore M, Weiss JL, Chiariello M (1996) Prolonged impairment of regional contractile function after resolution of exercise-induced angina. Evidence of myocardial stunning in patients with coronary artery disease. Circulation 94:2455–2464. https://doi.org/10.1161/01.cir.94.10.2455 - PubMed
  5. Anavekar NS, Chareonthaitawee P, Narula J, Gersh BJ (2016) Revascularization in patients with severe left ventricular dysfunction: Is the assessment of viability still viable? J Am Coll Cardiol 67:2874–2887. https://doi.org/10.1016/j.jacc.2016.03.571 - PubMed
  6. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, Brunner-La Rocca HP, Choi DJ, Chopra V, Chuquiure-Valenzuela E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely B, Nicholls SJ, Perrone SV, Pina IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H, Verma S, Vinereanu D, Zhang J, Carson P, Lam CSP, Marx N, Zeller C, Sattar N, Jamal W, Schnaidt S, Schnee JM, Brueckmann M, Pocock SJ, Zannad F, Packer M, Investigators EM-PT (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461. https://doi.org/10.1056/NEJMoa2107038 - PubMed
  7. Ansorge EJ, Augsutyniak RA, Perinot ML, Hammond RL, Kim J-K, Sala-Mercado JA, Rodriguez J, Rossi NF, O’Leary DS (2005) Altered muscle metaboreflex control of coronary blood flow and ventricular function in heart failure. Am J Physiol Heart Circ Physiol 288:H1381–H1388. https://doi.org/10.1152/ajpheart.00985.2004 - PubMed
  8. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232. https://doi.org/10.1056/NEJMoa051779 - PubMed
  9. Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, Grünwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017. https://doi.org/10.1161/01.cir.0000043246.74879.cd - PubMed
  10. Bache RJ (1988) Effects of hypertrophy on the coronary circulation. Prog Cardiovasc Dis 30:403–440. https://doi.org/10.1016/0033-0620(88)90005-9 - PubMed
  11. Bache RJ, Dai XZ (1990) Myocardial oxygen consumption during exercise in the presence of left ventricular hypertrophy secondary to supravalvular aortic stenosis. J Am Coll Cardiol 15:1157–1164. https://doi.org/10.1016/0735-1097(90)90258-q - PubMed
  12. Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77–165. https://doi.org/10.1007/3540528806_4 - PubMed
  13. Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31:988–998. https://doi.org/10.1053/hupa.2000.16659 - PubMed
  14. Bertero E, Heusch G, Münzel T, Maack C (2021) A pathophysiological compass to personalize antianginal drug treatment. Nat Rev Cardiol 18:838–852. https://doi.org/10.1038/s41569-021-00573-w - PubMed
  15. Besnier M, Galaup A, Nicol L, Henry JP, Coquerel D, Gueret A, Mulder P, Brakenhielm E, Thuillez C, Germain S, Richard V, Ouvrard-Pascaud A (2014) Enhanced angiogenesis and increased cardiac perfusion after myocardial infarction in protein tyrosine phosphatase 1B-deficient mice. Faseb J 28:3351–3361. https://doi.org/10.1096/fj.13-245753 - PubMed
  16. Betgem RP, de Waard GA, Nijveldt R, Beek AM, Escaned J, van Royen N (2015) Intramyocardial haemorrhage after acute myocardial infarction. Nat Rev Cardiol 12:156–167. https://doi.org/10.1038/nrcardio.2014.188 - PubMed
  17. Bishop SP, Powell PC, Hasebe N, Shen YT, Patrick TA, Hittinger L, Vatner SF (1996) Coronary vascular morphology in pressure-overload left ventricular hypertrophy. J Mol Cell Cardiol 28:141–154. https://doi.org/10.1006/jmcc.1996.0014 - PubMed
  18. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, Berman DS, Mancini GB, Weintraub WS (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356:1503–1516. https://doi.org/10.1056/NEJMoa070829 - PubMed
  19. Bolli R, Triana JF, Jeroudi MO (1990) Prolonged impairment of coronary vasodilation after reversible ischemia. Circ Res 67:332–343. https://doi.org/10.1161/01.res.67.2.332 - PubMed
  20. Borlotti A, Jerosch-Herold M, Liu D, Viliani D, Bracco A, Alkhalil M, De Maria GL, Ox AMISI, Channon KM, Banning AP, Choudhury RP, Neubauer S, Kharbanda RK, Dall’Armellina E (2019) Acute microvascular impairment post-reperfused STEMI is reversible and has additional clinical predictive value: a CMR OxAMI Study. J Am Coll Cardiol Cardiovasc Imaging 12:1783–1793. https://doi.org/10.1016/j.jcmg.2018.10.028 - PubMed
  21. Braunwald E (2021) SGLT2 inhibitors: the statins of the 21st century. Eur Heart J. https://doi.org/10.1093/eurheartj/ehab765 - PubMed
  22. Bristow JD, McFalls EO, Anselone CG, Pantely GA (1987) Coronary vasodilator reserve persists despite tachycardia and myocardial ischemia. Am J Physiol Heart Circ Physiol 253:H422–H431. https://doi.org/10.1152/ajpheart.1987.253.2.H422 - PubMed
  23. Cai Z, van Duin RWB, Stam K, Uitterdijk A, van der Velden J, Vonk Noordegraaf A, Duncker DJ, Merkus D (2019) Right ventricular oxygen delivery as a determinant of right ventricular functional reserve during exercise in juvenile swine with chronic pulmonary hypertension. Am J Physiol Heart Circ Physiol 317:H840–H850. https://doi.org/10.1152/ajpheart.00130.2019 - PubMed
  24. Calabretta R, Castello A, Linguanti F, Tutino F, Ciaccio A, Giglioli C, Sciagra R (2018) Prediction of functional recovery after primary PCI using the estimate of myocardial salvage in gated SPECT early after acute myocardial infarction. Eur J Nucl Med Mol Imaging 45:530–537. https://doi.org/10.1007/s00259-017-3891-1 - PubMed
  25. Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G, Parodi O, Salvadori PA, Nista N, Papi L et al (1991) Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 17:879–886. https://doi.org/10.1016/0735-1097(91)90869-b - PubMed
  26. Camici PG, Tschope C, Di Carli MF, Rimoldi O, Van Linthout S (2020) Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc Res 116:806–816. https://doi.org/10.1093/cvr/cvaa023 - PubMed
  27. Canetti M, Akhter MW, Lerman A, Karaalp IS, Zell JA, Singh H, Mehra A, Elkayam U (2003) Evaluation of myocardial blood flow reserve in patients with chronic congestive heart failure due to idiopathic dilated cardiomyopathy. Am J Cardiol 92:1246–1249. https://doi.org/10.1016/j.amjcard.2003.08.002 - PubMed
  28. Carabello BA, Nakano K, Ishihara K, Kanazawa S, Biederman RW, Spann JF Jr (1991) Coronary blood flow in dogs with contractile dysfunction due to experimental volume overload. Circulation 83:1063–1075. https://doi.org/10.1161/01.cir.83.3.1063 - PubMed
  29. Carrick D, Haig C, Ahmed N, Rauhalammi S, Clerfond G, Carberry J, Mordi I, McEntegart M, Petrie MC, Eteiba H, Hood S, Watkins S, Lindsay MM, Mahrous A, Welsh P, Sattar N, Ford I, Oldroyd KG, Radjenovic A, Berry C (2016) Temporal evolution of myocardial hemorrhage and edema in patients after acute ST-segment elevation myocardial infarction: pathophysiological insights and clinical implications. J Am Heart Assoc 5:e002834. https://doi.org/10.1161/JAHA.115.002834 - PubMed
  30. Cecchi F, Olivotto I, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035. https://doi.org/10.1056/NEJMoa025050 - PubMed
  31. Cecchi F, Sgalambro A, Baldi M, Sotgia B, Antoniucci D, Camici PG, Sciagra R, Olivotto I (2009) Microvascular dysfunction, myocardial ischemia, and progression to heart failure in patients with hypertrophic cardiomyopathy. J Cardiovasc Transl Res 2:452–461. https://doi.org/10.1007/s12265-009-9142-5 - PubMed
  32. Christensen TE, Ahtarovski KA, Bang LE, Holmvang L, Soholm H, Ghotbi AA, Andersson H, Vejlstrup N, Ihlemann N, Engstrom T, Kjaer A, Hasbak P (2015) Basal hyperaemia is the primary abnormality of perfusion in Takotsubo cardiomyopathy: a quantitative cardiac perfusion positron emission tomography study. Eur Heart J Cardiovasc Imaging 16:1162–1169. https://doi.org/10.1093/ehjci/jev065 - PubMed
  33. Clair MJ, Krombach S, Coker ML, Heslin TL, Kribbs SB, de Casparo M, Spinale FG (1998) Angiotensin AT - PubMed
  34. Coutsos M, Sala-Mercado JA, Ichinose M, Li Z, Dawe EJ, O’Leary DS (2013) Muscle metaboreflex-induced coronary vasoconstriction limits ventricular contractility during dynamic exercise in heart failure. Am J Physiol Heart Circ Physiol 304:H1029–H1037. https://doi.org/10.1152/ajpheart.00879.2012 - PubMed
  35. Crystal GJ, Pagel PS (2018) Right ventricular perfusion: physiology and clinical implications. Anesthesiology 128:202–218. https://doi.org/10.1097/ALN.0000000000001891 - PubMed
  36. Dass S, Holloway CJ, Cochlin LE, Rider OJ, Mahmod M, Robson M, Sever E, Clarke K, Watkins H, Ashrafian H, Karamitsos TD, Neubauer S (2015) No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circ Heart Fail 8:1088–1093. https://doi.org/10.1161/CIRCHEARTFAILURE.114.002169 - PubMed
  37. De Caterina AR, Leone AM, Galiuto L, Basile E, Fedele E, Paraggio L, De Maria GL, Porto I, Niccoli G, Burzotta F, Trani C, Rebuzzi AG, Crea F (2013) Angiographic assessment of myocardial perfusion in Tako-Tsubo syndrome. Int J Cardiol 168:4717–4722. https://doi.org/10.1016/j.ijcard.2013.07.172 - PubMed
  38. de Waard GA, Hollander MR, Teunissen PF, Jansen MF, Eerenberg ES, Beek AM, Marques KM, van de Ven PM, Garrelds IM, Danser AH, Duncker DJ, van Royen N (2016) Changes in coronary blood flow after acute myocardial infarction: insights from a patient study and an experimental porcine model. J Am Coll Cardiol Cardiovasc Interv 9:602–613. https://doi.org/10.1016/j.jcin.2016.01.001 - PubMed
  39. de Waha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, Ben-Yehuda O, Jenkins P, Thiele H, Stone GW (2017) Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur Heart J 38:3502–3510. https://doi.org/10.1093/eurheartj/ehx414 - PubMed
  40. Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, Niccoli G, Crea F (2021) Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J Am Coll Cardiol 78:1352–1371. https://doi.org/10.1016/j.jacc.2021.07.042 - PubMed
  41. Depré C, Vanoverschelde J-LJ, Melin JA, Borgers M, Bol A, Ausma J, Dion R, Wijns W (1995) Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol Heart Circ Physiol 268:H1265–H1275. https://doi.org/10.1152/ajpheart.1995.268.3.H1265 - PubMed
  42. Dryer K, Gajjar M, Narang N, Lee M, Paul J, Shah AP, Nathan S, Butler J, Davidson CJ, Fearon WF, Shah SJ, Blair JEA (2018) Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 314:H1033–H1042. https://doi.org/10.1152/ajpheart.00680.2017 - PubMed
  43. Duncker DJ, de Beer V, Merkus D (2008) Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction. Med Biol Eng Comput 46:485–497. https://doi.org/10.1007/s11517-008-0315-1 - PubMed
  44. Duncker DJ, Ishibashi Y, Bache RJ (1998) Effect of treadmill exercise on transmural distribution of blood flow in hypertrophied left ventricle. Am J Physiol Heart Circ Physiol 275:H1274–H1282. https://doi.org/10.1152/ajpheart.1998.275.4.H1274 - PubMed
  45. Duncker DJ, Koller A, Merkus D, Canty JM Jr (2015) Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis 57:409–422. https://doi.org/10.1016/j.pcad.2014.12.002 - PubMed
  46. Duncker DJ, Traverse JH, Ishibashi Y, Bache RJ (1999) Effect of NO on transmural distribution of blood flow in hypertrophied left ventricle during exercise. Am J Physiol Heart Circ Physiol 276:H1305–H1312. https://doi.org/10.1152/ajpheart.1999.276.4.H1305 - PubMed
  47. Ehring T, Krajcar M, Baumgart D, Kompa S, Hümmelgen M, Heusch G (1995) Cholinergic and α-adrenergic coronary vasomotion with increasing ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 268:H886–H894. https://doi.org/10.1152/ajpheart.1995.268.2.H886 - PubMed
  48. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, Francone M, Desch S, Gutberlet M, Strohm O, Schuler G, Schulz-Menger J, Thiele H, Friedrich MG (2011) Clinical characteristics and cardiovascular magnetic resonance findings in stress (Takotsubo) cardiomyopathy. JAMA 306:277–286. https://doi.org/10.1001/jama.2011.992 - PubMed
  49. Ellis ER, Josephson ME (2013) What about tachycardia-induced cardiomyopathy? Arrhythm Electrophysiol Rev 2:82–90. https://doi.org/10.15420/aer.2013.2.2.82 - PubMed
  50. Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA (1983) Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol 1:1047–1055. https://doi.org/10.1016/s0735-1097(83)80107-7 - PubMed
  51. Emter CA, Tharp DL, Ivey JR, Ganjam VK, Bowles DK (2011) Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca(2)(+)-sensitive K(+) current in miniature swine with LV hypertrophy. Am J Physiol Heart Circ Physiol 301:H1687-1694. https://doi.org/10.1152/ajpheart.00610.2011 - PubMed
  52. Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich K-W, Emmrich F, Kluge R, Kendziorra K, Sabri O, Schuler G, Hambrecht R (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion. First randomized and placebo-controlled study. Circ Res 97:756–762. https://doi.org/10.1161/01.RES.0000185811.71306.8b - PubMed
  53. Erbs S, Linke A, Schachinger V, Assmus B, Thiele H, Diederich KW, Hoffmann C, Dimmeler S, Tonn T, Hambrecht R, Zeiher AM, Schuler G (2007) Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 116:366–374. https://doi.org/10.1161/CIRCULATIONAHA.106.671545 - PubMed
  54. Ezaz G, Long JB, Gross CP, Chen J (2014) Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc 3:e000472. https://doi.org/10.1161/JAHA.113.000472 - PubMed
  55. Fallavollita JA, Canty JM (1999) Differential - PubMed
  56. Fallavollita JA, Canty JMJ (2002) Ischemic cardiomyopathy in pigs with two-vessel occlusion and viable, chronically dysfunctional myocardium. Am J Physiol Heart Circ Physiol 282:H1370–H1379. https://doi.org/10.1152/ajpheart.00138.2001 - PubMed
  57. Fallavollita JA, Malm BJ, Canty JMJ (2003) Hibernating myocardium retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest. Circ Res 92:48–55. https://doi.org/10.1161/01.res.0000049104.57549.03 - PubMed
  58. Feola M, Chauvie S, Rosso GL, Biggi A, Ribichini F, Bobbio M (2008) Reversible impairment of coronary flow reserve in Takotsubo cardiomyopathy: a myocardial PET study. J Nucl Cardiol 15:811–817. https://doi.org/10.1007/BF03007363 - PubMed
  59. Fernandez-Sola J (2015) Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat Rev Cardiol 12:576–587. https://doi.org/10.1038/nrcardio.2015.91 - PubMed
  60. Fogarassy G, Vathy-Fogarassy A, Kenessey I, Kasler M, Forster T (2019) Risk prediction model for long-term heart failure incidence after epirubicin chemotherapy for breast cancer—a real-world data-based, nationwide classification analysis. Int J Cardiol 285:47–52. https://doi.org/10.1016/j.ijcard.2019.03.013 - PubMed
  61. Fragasso G, Benti R, Sciammarella M, Rossetti E, Savi A, Gerundini P, Chierchia S (1991) Symptom-limited exercise testing causes sustained diastolic dysfunction in patients with coronary disease and low effort tolerance. J Am Coll Cardiol 17:1251–1255. https://doi.org/10.1016/s0735-1097(10)80131-7 - PubMed
  62. Franciosa JA, Heckel R, Limas C, Cohn JN (1980) Progressive myocardial dysfunction associated with increased vascular resistance. Am J Physiol Heart Circ Physiol 239:H477–H482. https://doi.org/10.1152/ajpheart.1980.239.4.H477 - PubMed
  63. Francis GS, Benedict C, Johnstone DE (1990) Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. Circulation 82:1724–1729. https://doi.org/10.1161/01.cir.82.5.1724 - PubMed
  64. Franssen C, Chen S, Unger A, Korkmaz I, De Keulenaer GW, Tschöpe C, Leite-Moreira AF, Musters R, Niessen HWM, Linke WA, Paulus WJ, Hamdani N (2016) Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. J Am Coll Cardiol Heart Failure 4:312–324. https://doi.org/10.1016/j.jchf.2015.10.007 - PubMed
  65. Gaasch WH, Zile MR, Hoshino PK, Apstein CS, Blaustein AS (1989) Stress-shortening relations and myocardial blood flow in compensated and failing canine hearts with pressure-overload hypertrophy. Circulation 79:872–883. https://doi.org/10.1161/01.cir.79.4.872 - PubMed
  66. Galan-Arriola C, Vilchez-Tschischke JP, Lobo M, Lopez GJ, de Molina-Iracheta A, Perez-Martinez C, Villena-Gutierrez R, Macias A, Diaz-Rengifo IA, Oliver E, Fuster V, Sanchez-Gonzalez J, Ibanez B (2021) Coronary microcirculation damage in anthracycline cardiotoxicity. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab053:10.1093/cvr/cvab053 - PubMed
  67. Galiuto L, De Caterina AR, Porfidia A, Parraggio L, Barchetta S, Locorotondo G, Rebuzzi AG, Crea F (2010) Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in apical ballooning or Tako-Tsubo syndrome. Eur Heart J 31:1319–1327. https://doi.org/10.1093/eurheartj/ehq039 - PubMed
  68. Gandjbakhch E, Redheuil A, Pousset F, Charron P, Frank R (2018) Clinical diagnosis, imaging, and genetics of arrhythmogenic right ventricular cardiomyopathy/dysplasia: JACC state-of-the-art review. J Am Coll Cardiol 72:784–804. https://doi.org/10.1016/j.jacc.2018.05.065 - PubMed
  69. Gewirtz H, Dilsizian V (2017) Myocardial viability: survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res 120:1197–1212. https://doi.org/10.1161/CIRCRESAHA.116.307898 - PubMed
  70. Ghadri JR, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, Cammann VL, Crea F, Galiuto L, Desmet W, Yoshida T, Manfredini R, Eitel I, Kosuge M, Nef HM, Deshmukh A, Lerman A, Bossone E, Citro R, Ueyama T, Corrado D, Kurisu S, Ruschitzka F, Winchester D, Lyon AR, Omerovic E, Bax JJ, Meimoun P, Tarantini G, Rihal C, Migliore F, Horowitz JD, Shimokawa H, Luscher TF, Templin C (2018) International expert consensus document on Takotsubo syndrome (Part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J 39:2032–2046. https://doi.org/10.1093/eurheartj/ehy076 - PubMed
  71. Gill RM, Braz JC, Jin N, Etgen GJ, Shen W (2007) Restoration of impaired endothelium-dependent coronary vasodilation in failing heart: role of eNOS phosphorylation and CGMP/cGK-I signaling. Am J Physiol Heart Circ Physiol 292:H2782–H2790. https://doi.org/10.1152/ajpheart.00831.2006 - PubMed
  72. Gold FL, Bache RJ (1982) Transmural right ventricular blood flow during acute pulmonary artery hypertension in the sedated dog. Evidence for subendocardial ischemia despite residual vasodilator reserve. Circ Res 51:196–204. https://doi.org/10.1161/01.res.51.2.196 - PubMed
  73. Gold FL, Horwitz LD, Bache RJ (1984) Adrenergic coronary vasoconstriction in acute right ventricular hypertension. Cardiovasc Res 18:447–454. https://doi.org/10.1093/cvr/18.7.447 - PubMed
  74. Goodwill AG, Dick GM, Kiel AM, Tune JD (2017) Regulation of coronary blood flow. Compr Physiol 7:321–382. https://doi.org/10.1002/cphy.c160016 - PubMed
  75. Group M-HS (1999) Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure. Lancet 353:2001–2007. https://doi.org/10.1016/S0140-6736(99)04440-2 - PubMed
  76. Gulati A, Ismail TF, Ali A, Hsu LY, Goncalves C, Ismail NA, Krishnathasan K, Davendralingam N, Ferreira P, Halliday BP, Jones DA, Wage R, Newsome S, Gatehouse P, Firmin D, Jabbour A, Assomull RG, Mathur A, Pennell DJ, Arai AE, Prasad SK (2019) Microvascular dysfunction in dilated cardiomyopathy: a quantitative stress perfusion cardiovascular magnetic resonance study. J Am Coll Cardiol Cardiovasc Imaging 12:1699–1708. https://doi.org/10.1016/j.jcmg.2018.10.032 - PubMed
  77. Haitsma DB, Bac D, Raja N, Boomsma F, Verdouw PD, Duncker DJ (2001) Minimal impairment of myocardial blood flow responses to exercise in the remodeled left ventricle early after myocardial infarction, despite significant hemodynamic and neurohumoral alterations. Cardiovasc Res 52:417–428. https://doi.org/10.1016/s0008-6363(01)00426-6 - PubMed
  78. Haitsma DB, Merkus D, Vermeulen J, Verdouw PD, Duncker DJ (2002) Nitric oxide production is maintained in exercising swine with chronic left ventricular dysfunction. Am J Physiol Heart Circ Physiol 282:H2198–H2209. https://doi.org/10.1152/ajpheart.00834.2001 - PubMed
  79. Harjola VP, Mebazaa A, Celutkiene J, Bettex D, Bueno H, Chioncel O, Crespo-Leiro MG, Falk V, Filippatos G, Gibbs S, Leite-Moreira A, Lassus J, Masip J, Mueller C, Mullens W, Naeije R, Nordegraaf AV, Parissis J, Riley JP, Ristic A, Rosano G, Rudiger A, Ruschitzka F, Seferovic P, Sztrymf B, Vieillard-Baron A, Yilmaz MB, Konstantinides S (2016) Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail 18:226–241. https://doi.org/10.1002/ejhf.478 - PubMed
  80. Harrison DG, Florentine MS, Brooks LA, Cooper SM, Marcus ML (1988) The effect of hypertension and left ventricular hypertrophy on the lower range of coronary autoregulation. Circulation 77:1108–1115. https://doi.org/10.1161/01.cir.77.5.1108 - PubMed
  81. He K-L, Dickstein M, Sabbah HN, Yi G-H, Gu A, Maurer M, Wei C-M, Wang J, Burkhoff D (2004) Mechanisms of heart failure with well preserved ejection fraction in dogs following limited coronary microembolization. Cardiovasc Res 64:72–83. https://doi.org/10.1016/j.cardiores.2004.06.007 - PubMed
  82. Herrmann J (2020) Vascular toxic effects of cancer therapies. Nat Rev Cardiol 17:503–522. https://doi.org/10.1038/s41569-020-0347-2 - PubMed
  83. Herrmann J (2020) Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol 17:474–502. https://doi.org/10.1038/s41569-020-0348-1 - PubMed
  84. Herrmann J, Haude M, Lerman A, Schulz R, Volbracht L, Ge J, Schmermund A, Wieneke H, von Birgelen C, Eggebrecht H, Baumgart D, Heusch G, Erbel R (2001) Abnormal coronary flow velocity reserve following coronary intervention is associated with cardiac marker elevation. Circulation 103:2339–2345. https://doi.org/10.1161/01.cir.103.19.2339 - PubMed
  85. Hesse B, Meyer C, Nielsen FS, Sato A, Hove JD, Holm S, Bang LE, Kofoed KF, Svendsen TL, Parving HH, Opie LH (2004) Myocardial perfusion in type 2 diabetes with left ventricular hypertrophy: normalisation by acute angiotensin-converting enzyme inhibition. Eur J Nucl Med Mol Imaging 31:362–368. https://doi.org/10.1007/s00259-003-1388-6 - PubMed
  86. Heusch G (1990) α-Adrenergic mechanisms in myocardial ischemia. Circulation 81:1–13. https://doi.org/10.1161/01.cir.81.1.1 - PubMed
  87. Heusch G (1998) Stunning—great paradigmatic, but little clinical importance. Basic Res Cardiol 93:164–166. https://doi.org/10.1007/s003950050081 - PubMed
  88. Heusch G (1998) Hibernating myocardium. Physiol Rev 78:1055–1085. https://doi.org/10.1152/physrev.1998.78.4.1055 - PubMed
  89. Heusch G (2008) Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 153:1589–1601. https://doi.org/10.1038/sj.bjp.0707673 - PubMed
  90. Heusch G (2011) Heart rate and heart failure. Circ J 75:229–236. https://doi.org/10.1253/circj.cj-10-0925 - PubMed
  91. Heusch G (2019) Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am J Physiol Heart Circ Physiol 316:H1439–H1446. https://doi.org/10.1152/ajpheart.00139.2019 - PubMed
  92. Heusch G (2019) Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol 114:45. https://doi.org/10.1007/s00395-019-0756-8 - PubMed
  93. Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y - PubMed
  94. Heusch G (2021) Myocardial stunning and hibernation revisited. Nat Rev Cardiol 18:522–536. https://doi.org/10.1038/s41569-021-00506-7 - PubMed
  95. Heusch G, Baumgart D, Camici P, Chilian W, Gregorini L, Hess O, Indolfi C, Rimoldi O (2000) α-Adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101:689–694. https://doi.org/10.1161/01.cir.101.6.689 - PubMed
  96. Heusch G, Kleinbongard P, Boese D, Levkau B, Haude M, Schulz R, Erbel R (2009) Coronary microembolization: from bedside to bench and back to bedside. Circulation 120:1822–1836. https://doi.org/10.1161/CIRCULATIONAHA.109.888784 - PubMed
  97. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L (2014) Cardiovascular remodeling in coronary artery disease and heart failure. Lancet 383:1933–1943. https://doi.org/10.1016/S0140-6736(14)60107-0 - PubMed
  98. Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288:H984–H999. https://doi.org/10.1152/ajpheart.01109.2004 - PubMed
  99. Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF (1978) Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol Heart Circ Physiol 234:H653–H659. https://doi.org/10.1152/ajpheart.1978.234.6.H653 - PubMed
  100. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985. https://doi.org/10.1172/JCI108178 - PubMed
  101. Hoffmann J, Luxan G, Abplanalp WT, Glaser SF, Rasper T, Fischer A, Muhly-Reinholz M, Potente M, Assmus B, John D, Zeiher AM, Dimmeler S (2021) Post-myocardial infarction heart failure dysregulates the bone vascular niche. Nat Commun 12:3964. https://doi.org/10.1038/s41467-021-24045-4 - PubMed
  102. Hoole SP, Heck PM, White PA, Read PA, Khan SN, West NE, O’Sullivan M, Dutka DP (2010) Stunning and cumulative left ventricular dysfunction occurs late after coronary balloon occlusion in humans insights from simultaneous coronary and left ventricular hemodynamic assessment. J Am Coll Cardiol Cardiovasc Interv 3:412–418. https://doi.org/10.1016/j.jcin.2009.12.014 - PubMed
  103. Hou M, Chen Y, Traverse JH, Li Y, Barsoum M, Bache RJ (2004) ET-A receptor activity restrains coronary blood flow in the failing heart. J Cardiovasc Pharmacol 43:764–769. https://doi.org/10.1097/00005344-200406000-00005 - PubMed
  104. Howlett JG, Stebbins A, Petrie MC, Jhund PS, Castelvecchio S, Cherniavsky A, Sueta CA, Roy A, Pina IL, Wurm R, Drazner MH, Andersson B, Batlle C, Senni M, Chrzanowski L, Merkely B, Carson P, Desvigne-Nickens PM, Lee KL, Velazquez EJ, Al-Khalidi HR, Investigators S (2019) CABG Improves outcomes in patients with ischemic cardiomyopathy: 10-Year follow-up of the STICH trial. J Am Coll Cardiol Heart Failure 7:878–887. https://doi.org/10.1016/j.jchf.2019.04.018 - PubMed
  105. Huizar JF, Ellenbogen KA, Tan AY, Kaszala K (2019) Arrhythmia-induced cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 73:2328–2344. https://doi.org/10.1016/j.jacc.2019.02.045 - PubMed
  106. Huo Y, Kassab GS (2015) Remodeling of left circumflex coronary arterial tree in pacing-induced heart failure. J Appl Physiol 119:404–411. https://doi.org/10.1152/japplphysiol.00262.2015 - PubMed
  107. Ikram H, Rogers SJ, Charles CJ, Sands J, Richards AM, Bridgman PG, Gooneratne R (1997) An ovine model of acute myocardial infarction and chronic left ventricular dysfunction. Angiology 48:679–688. https://doi.org/10.1177/000331979704800803 - PubMed
  108. Investigators TS (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293–302. https://doi.org/10.1056/NEJM199108013250501 - PubMed
  109. Ishihara K, Zile MR, Nagatsu M, Nakano K, Tomita M, Kanazawa S, Clamp L, DeFreyte G, Carabello BA (1992) Coronary blood flow after the regression of pressure-overload left ventricular hypertrophy. Circ Res 71:1472–1481. https://doi.org/10.1161/01.RES.71.6.1472 - PubMed
  110. Jameel MN, Xiong Q, Mansoor A, Bache RJ, Zhang J (2016) ATP sensitive K(+) channels are critical for maintaining myocardial perfusion and high energy phosphates in the failing heart. J Mol Cell Cardiol 92:116–121. https://doi.org/10.1016/j.yjmcc.2016.02.005 - PubMed
  111. Jerosch-Herold M, Sheridan DC, Kushner JD, Nauman D, Burgess D, Dutton D, Alharethi R, Li D, Hershberger RE (2008) Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 295:H1234–H1242. https://doi.org/10.1152/ajpheart.00429.2008 - PubMed
  112. Kainuma S, Miyagawa S, Fukushima S, Pearson J, Chen YC, Saito A, Harada A, Shiozaki M, Iseoka H, Watabe T, Watabe H, Horitsugi G, Ishibashi M, Ikeda H, Tsuchimochi H, Sonobe T, Fujii Y, Naito H, Umetani K, Shimizu T, Okano T, Kobayashi E, Daimon T, Ueno T, Kuratani T, Toda K, Takakura N, Hatazawa J, Shirai M, Sawa Y (2015) Cell-sheet therapy with omentopexy promotes arteriogenesis and improves coronary circulation physiology in failing heart. Mol Ther 23:374–386. https://doi.org/10.1038/mt.2014.225 - PubMed
  113. Kato S, Fukui K, Kodama S, Azuma M, Nakayama N, Iwasawa T, Kimura K, Tamura K, Utsunomiya D (2021) Cardiovascular magnetic resonance assessment of coronary flow reserve improves risk stratification in heart failure with preserved ejection fraction. J Cardiovasc Magn Reson 23:112. https://doi.org/10.1186/s12968-021-00807-3 - PubMed
  114. Kato S, Saito N, Kirigaya H, Gyotoku D, Iinuma N, Kusakawa Y, Iguchi K, Nakachi T, Fukui K, Futaki M, Iwasawa T, Kimura K, Umemura S (2016) Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc 5:e002649. https://doi.org/10.1161/JAHA.115.002649 - PubMed
  115. Kawano H, Okada R, Yano K (2003) Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels 18:32–39. https://doi.org/10.1007/s003800300005 - PubMed
  116. Kelshiker MA, Seligman H, Howard JP, Rahman H, Foley M, Nowbar AN, Rajkumar CA, Shun-Shin MJ, Ahmad Y, Sen S, Al-Lamee R, Petraco R (2021) Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J. https://doi.org/10.1093/eurheartj/ehab775 - PubMed
  117. Kleinbongard P, Heusch G (2021) A fresh look at coronary microembolization. Nat Rev Cardiol. https://doi.org/10.1038/s41569-021-00632-2 - PubMed
  118. Kloner RA, Przyklenk K (1991) Hibernation and stunning of the myocardium. N Engl J Med 325:1877–1879. https://doi.org/10.1056/NEJM199112263252610 - PubMed
  119. Klug G, Mayr A, Schenk S, Esterhammer R, Schocke M, Nocker M, Jaschke W, Pachinger O, Metzler B (2012) Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:46. https://doi.org/10.1186/1532-429X-14-46 - PubMed
  120. Knecht M, Burkhoff D, Yi G-H, Popilskis S, Homma S, Packer M, Wang J (1997) Coronary endothelial dysfunction precedes heart failure and reduction of coronary reserve in awake dogs. J Mol Cell Cardiol 29:217–227. https://doi.org/10.1006/jmcc.1996.0266 - PubMed
  121. Kobylecka M, Budnik M, Kochanowski J, Piatkowski R, Chojnowski M, Fronczewska-Wieniawska K, Mazurek T, Maczewska J, Peller M, Opolski G, Krolicki L (2018) Takotsubo cardiomyopathy: FDG myocardial uptake pattern in fasting patients. Comparison of PET/CT, SPECT, and ECHO results. J Nucl Cardiol 25:1260–1270. https://doi.org/10.1007/s12350-016-0775-x - PubMed
  122. Krams R, Kofflard MJM, Duncker DJ, von Birgelen C, Carlier S, Kliffen M, Ten Cate FJ, Serruys PW (1998) Decreased coronary flow reserve in hypertrophic cardiomyopathy is related to remodeling of the coronary microcirculation. Circulation 97:230–233. https://doi.org/10.1161/01.cir.97.3.230 - PubMed
  123. Kribbs SB, Merritt WM, Clair MJ, Krombach RS, Houck WV, Dodd MG, Mukherjee R, Spinale FG (1998) Amlodipine monotherapy, angiotensin-converting enzyme inhibition, and combination therapy with pacing-induced heart failure. Hypertension 31:755–765. https://doi.org/10.1161/01.hyp.31.3.755 - PubMed
  124. Krombach RS, Clair MJ, Hendrick JW, Mukherjee R, Houck WV, Hebbar L, Kribbs SB, Dodd MG, Spinale FG (1999) Amlodipine therapy in congestive heart failure: hemodynamic and neurohormonal effects at rest and after treadmill exercise. Am J Cardiol 84:3L-15L. https://doi.org/10.1016/s0002-9149(99)00359-8 - PubMed
  125. Kupatt C, Hinkel R, von Bruhl ML, Pohl T, Horstkotte J, Raake P, El AC, Thein E, Dimmeler S, Feron O, Boekstegers P (2007) Endothelial nitric oxide synthase overexpression provides a functionally relevant angiogenic switch in hibernating pig myocardium. J Am Coll Cardiol 49:1575–1584. https://doi.org/10.1016/j.jacc.2006.11.047 - PubMed
  126. Kurisu S, Sato H, Kawagoe T, Ishihara M, Shimatani Y, Nishioka K, Kono Y, Umemura T, Nakamura S (2002) Tako-tsubo-like left ventricular dysfunction with ST-segment elevation: a novel cardiac syndrome mimicking acute myocardial infarction. Am Heart J 143:448–455. https://doi.org/10.1067/mhj.2002.120403 - PubMed
  127. Lancaster J, Juneman E, Hagerty T, Do R, Hicks M, Meltzer K, Standley P, Gaballa M, Kellar R, Goldman S, Thai H (2010) Viable fibroblast matrix patch induces angiogenesis and increases myocardial blood flow in heart failure after myocardial infarction. Tissue Eng Part A 16:3065–3073. https://doi.org/10.1089/ten.TEA.2009.0589 - PubMed
  128. Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939. https://doi.org/10.1161/01.CIR.0000143232.67642.7A - PubMed
  129. Lavallee M, Cox D, Patrick TA, Vatner SF (1983) Salvage of myocardial function by coronary artery reperfusion 1, 2 and 3 hours after occlusion in conscious dogs. Circ Res 53:235–247. https://doi.org/10.1161/01.res.53.2.235 - PubMed
  130. Leopold JA, Kawut SM, Aldred MA, Archer SL, Benza RL, Bristow MR, Brittain EL, Chesler N, DeMan FS, Erzurum SC, Gladwin MT, Hassoun PM, Hemnes AR, Lahm T, Lima JAC, Loscalzo J, Maron BA, Rosa LM, Newman JH, Redline S, Rich S, Rischard F, Sugeng L, Tang WHW, Tedford RJ, Tsai EJ, Ventetuolo CE, Zhou Y, Aggarwal NR, Xiao L (2021) Diagnosis and treatment of right heart failure in pulmonary vascular diseases: a national heart, lung, and blood institute workshop. Circ Heart Fail 14:e007975. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007975 - PubMed
  131. Lopes RD, Alexander KP, Stevens SR, Reynolds HR, Stone GW, Pina IL, Rockhold FW, Elghamaz A, Lopez-Sendon JL, Farsky PS, Chernyavskiy AM, Diaz A, Phaneuf D, DeBelder MA, Ma Y-t, Guzman LA, Khouri M, Sionis A, Hausenloy DJ, Doerr R, Selvanayagam JK, Maggioni AP, Hochman JS, Maron DJ (2020) Initial invasive versus conservative management of stable ischemic heart disease patients with a history of heart failure or left ventricular dysfunction: insights from the ISCHEMIA Trial. Circulation 142:1725–1735. https://doi.org/10.1161/CIRCULATIONAHA.120.050304 - PubMed
  132. Lyon AR, Citro R, Schneider B, Morel O, Ghadri JR, Templin C, Omerovic E (2021) Pathophysiology of Takotsubo syndrome: JACC state-of-the-art review. J Am Coll Cardiol 77:902–921. https://doi.org/10.1016/j.jacc.2020.10.060 - PubMed
  133. Mahmod M, Francis JM, Pal N, Lewis A, Dass S, De Silva R, Petrou M, Sayeed R, Westaby S, Robson MD, Ashrafian H, Neubauer S, Karamitsos TD (2014) Myocardial perfusion and oxygenation are impaired during stress in severe aortic stenosis and correlate with impaired energetics and subclinical left ventricular dysfunction. J Cardiovasc Magn Reson 16:29. https://doi.org/10.1186/1532-429X-16-29 - PubMed
  134. Mangion K, Carrick D, Clerfond G, Rush C, McComb C, Oldroyd KG, Petrie MC, Eteiba H, Lindsay M, McEntegart M, Hood S, Watkins S, Davie A, Auger DA, Zhong X, Epstein FH, Haig CE, Berry C (2019) Predictors of segmental myocardial functional recovery in patients after an acute ST-elevation myocardial infarction. Eur J Radiol 112:121–129. https://doi.org/10.1016/j.ejrad.2019.01.010 - PubMed
  135. Maranta F, Tondi L, Agricola E, Margonato A, Rimoldi O, Camici PG (2015) Ivabradine reduces myocardial stunning in patients with exercise-inducible ischaemia. Basic Res Cardiol 110:55. https://doi.org/10.1007/s00395-015-0511-8 - PubMed
  136. Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8:545–557. https://doi.org/10.1016/s0735-1097(86)80181-4 - PubMed
  137. Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, Chaitman BR, Senior R, Lopez-Sendon J, Alexander KP, Lopes RD, Shaw LJ, Berger JS, Newman JD, Sidhu MS, Goodman SG, Ruzyllo W, Gosselin G, Maggioni AP, White HD, Bhargava B, Min JK, Mancini GBJ, Berman DS, Picard MH, Kwong RY, Ali ZA, Mark DB, Spertus JA, Krishnan MN, Elghamaz A, Moorthy N, Hueb WA, Demkow M, Mavromatis K, Bockeria O, Peteiro J, Miller TD, Szwed H, Doerr R, Keltai M, Selvanayagam JB, Steg PG, Held C, Kohsaka S, Mavromichalis S, Kirby R, Jeffries NO, Harrell FE Jr, Rockhold FW, Broderick S, Ferguson TB Jr, Williams DO, Harrington RA, Stone GW, Rosenberg Y, Group IR (2020) Initial invasive or conservative strategy for stable coronary disease. N Engl J Med 382:1395–1407. https://doi.org/10.1056/NEJMoa1915922 - PubMed
  138. Mathier MA, Rose GA, Fifer MA, Miyamoto MI, Dinsmore RE, Castano HH, Dec GW, Palacios IF, Semigran MJ (1998) Coronary endothelial dysfunction in patients with acute-onset idiopathic dilated cardiomyopathy. J Am Coll Cardiol 32:216–224. https://doi.org/10.1016/s0735-1097(98)00209-5 - PubMed
  139. Mathur A, Fernandez-Aviles F, Dimmeler S, Hauskeller C, Janssens S, Menasche P, Wojakowski W, Martin JF, Zeiher A, Investigators B (2017) The consensus of the Task Force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for the treatment of acute myocardial infarction and heart failure: update 2016. Eur Heart J 38:2930–2935. https://doi.org/10.1093/eurheartj/ehw640 - PubMed
  140. Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross J Jr (1983) Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 68:170–182. https://doi.org/10.1161/01.CIR.68.1.170 - PubMed
  141. McFalls EO, Duncker DJ, Ward H, Fashingbauer P (1995) Impaired endothelium-dependent vasodilation of coronary resistance vessels in severely stunned porcine myocardium. Basic Res Cardiol 90:498–509. https://doi.org/10.1007/BF00788543 - PubMed
  142. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman JD, Ferguson JJ, Safian RD, Grossman W (1986) Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74:693–702. https://doi.org/10.1161/01.cir.74.4.693 - PubMed
  143. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjostrand M, Langkilde AM, Committees D-HT, Investigators (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303 - PubMed
  144. Melchert PJ, Duncker DJ, Traverse JH, Bache RJ (1999) Role of K - PubMed
  145. Merkus D, Haitsma DB, Sorop O, Boomsma F, de Beer VJ, Lamers JM, Verdouw PD, Duncker DJ (2006) Coronary vasoconstrictor influence of angiotensin II is reduced in remodeled myocardium after myocardial infarction. Am J Physiol Heart Circ Physiol 291:H2082–H2089. https://doi.org/10.1152/ajpheart.00861.2005 - PubMed
  146. Merkus D, Houweling B, van den Meiracker AH, Boomsma F, Duncker DJ (2005) Contribution of endothelin to coronary vasomotor tone is abolished after myocardial infarction. Am J Physiol Heart Circ Physiol 288:H871–H880. https://doi.org/10.1152/ajpheart.00429.2004 - PubMed
  147. Merkus D, Houweling B, van Vliet M, Duncker DJ (2005) Contribution of K+ATP channels to coronary vasomotor tone regulation is enhanced in exercising swine with a recent myocardial infarction. Am J Physiol Heart Circ Physiol 288:H1306–H1313. https://doi.org/10.1152/ajpheart.00631.2004 - PubMed
  148. Mills I, Fallon JT, Wrenn D, Sasken H, Gray W, Bier J, Levine D, Berman S, Gilson M, Gewirtz H (1994) Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow. Am J Physiol Heart Circ Physiol 266:H447–H457. https://doi.org/10.1152/ajpheart.1994.266.2.H447 - PubMed
  149. Mochula A, Mochula OV, Maltseva AN, Vorobyeva DA, Ryabov VV, Zavadovsky KV (2021) Dynamic SPECT with assessment myocardial blood flow and coronary flow reserve in MINOCA patients: comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeaa356.339 - PubMed
  150. Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131:550–559. https://doi.org/10.1161/CIRCULATIONAHA.114.009625 - PubMed
  151. Motz W, Strauer BE (1996) Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension 27:1031–1038. https://doi.org/10.1161/01.hyp.27.5.1031 - PubMed
  152. Muhlfeld C, Rajces A, Manninger M, Alogna A, Wierich MC, Scherr D, Post H, Schipke J (2020) A transmural gradient of myocardial remodeling in early-stage heart failure with preserved ejection fraction in the pig. J Anat 236:531–539. https://doi.org/10.1111/joa.13117 - PubMed
  153. Mulder FI, Horvath-Puho E, van Es N, Pedersen L, Buller HR, Botker HE, Sorensen HT (2021) Arterial thromboembolism in cancer patients. A Danish population-based cohort study. J Am Coll Cardiol Cardiooncol 3:205–218. https://doi.org/10.1016/j.jaccao.2021.02.007 - PubMed
  154. Murdoch CE, Chaubey S, Zeng L, Yu B, Ivetic A, Walker SJ, Vanhoutte D, Heymans S, Grieve DJ, Cave AC, Brewer AC, Zhang M, Shah AM (2014) Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol 63:2734–2741. https://doi.org/10.1016/j.jacc.2014.02.572 - PubMed
  155. Murray PA, Vatner SF (1981) Reduction of maximal coronary vasodilator capacity in conscious dogs with severe right ventricular hypertrophy. Circ Res 48:25–33. https://doi.org/10.1161/01.res.48.1.25 - PubMed
  156. Murray PA, Vatner SF (1981) Abnormal coronary vascular response to exercise in dogs with severe right ventricular hypertrophy. J Clin Invest 67:1314–1323. https://doi.org/10.1172/jci110160 - PubMed
  157. Nakamura R, Egashira K, Arimura K, Machida Y, Ide T, Tsutsui H, Shimokawa H, Takeshita A (2001) Increased inactivation of nitric oxide is involved in impaired coronary flow reserve in heart failure. Am J Physiol Heart Circ Physiol 281:H2619–H2625. https://doi.org/10.1152/ajpheart.2001.281.6.H2619 - PubMed
  158. Nakayama M, Yamamuro M, Takashio S, Uemura T, Nakayama N, Hirakawa K, Oda S, Utsunomiya D, Kaikita K, Hokimoto S, Yamashita Y, Morita Y, Kimura K, Tamura K, Tsujita K (2018) Late gadolinium enhancement on cardiac magnetic resonance imaging is associated with coronary endothelial dysfunction in patients with dilated cardiomyopathy. Heart Vessels 33:393–402. https://doi.org/10.1007/s00380-017-1069-1 - PubMed
  159. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, Gallopin M, Salvadori P, Sorace O, Carpeggiani C, Poddighe R, L’Abbate A, Parodi O (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193. https://doi.org/10.1161/hc0202.102119 - PubMed
  160. Neumann T, Heusch G (1997) Myocardial, skeletal muscle, and renal blood flow during exercise in conscious dogs with heart failure. Am J Physiol Heart Circ Physiol 273:H2452–H2457. https://doi.org/10.1152/ajpheart.1997.273.5.H2452 - PubMed
  161. Nienaber CA, Brunken RC, Sherman CT, Yeatman LA, Gambhir SS, Krivokapich J, Demer LL, Ratib O, Child JS, Phelps ME, Schelbert HR (1991) Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty. J Am Coll Cardiol 18:966–978. https://doi.org/10.1016/0735-1097(91)90755-x - PubMed
  162. Niitsuma T, Saito T, Tamagawa K, Saitoh S, Mitsugi M, Sato M, Maehara K, Maruyama Y (1999) Augmented basal nitric oxide production contributes to maintenance of coronary blood flow in dogs with pacing-induced heart failure. Jpn Heart J 40:629–644. https://doi.org/10.1536/jhj.40.629 - PubMed
  163. Oikawa Y, Maehara K, Saito T, Tamagawa K, Maruyama Y (2001) Attenuation of angiotensin II-mediated coronary vasoconstriction and vasodilatory action of angiotensin-converting enzyme inhibitor in pacing-induced heart failure in dogs. J Am Coll Cardiol 38:1188–1194. https://doi.org/10.1016/s0735-1097(01)01494-2 - PubMed
  164. Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F, Torricelli F, Camici PG (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol 47:1043–1048. https://doi.org/10.1016/j.jacc.2005.10.050 - PubMed
  165. Olivotto I, Girolami F, Sciagra R, Ackerman MJ, Sotgia B, Bos JM, Nistri S, Sgalambro A, Grifoni C, Torricelli F, Camici PG, Cecchi F (2011) Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol 58:839–848. https://doi.org/10.1016/j.jacc.2011.05.018 - PubMed
  166. Olsen MH, Wachtell K, Meyer C, Hove JD, Palmieri V, Dige-Petersen H, Rokkedal J, Hesse B, Ibsen H (2004) Association between vascular dysfunction and reduced myocardial flow reserve in patients with hypertension: a LIFE substudy. J Hum Hypertens 18:445–452. https://doi.org/10.1038/sj.jhh.1001716 - PubMed
  167. Ommen SR, Semsarian C (2021) Hypertrophic cardiomyopathy: a practical approach to guideline directed management. Lancet 398:2102–2108. https://doi.org/10.1016/S0140-6736(21)01205-8 - PubMed
  168. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367. https://doi.org/10.1016/S0140-6736(06)68074-4 - PubMed
  169. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Bohm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F, Investigators EM-RT (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383:1413–1424. https://doi.org/10.1056/NEJMoa2022190 - PubMed
  170. Padro T, Manfrini O, Bugiardini R, Canty J, Cenko E, De Luca G, Duncker DJ, Eringa EC, Koller A, Tousoulis D, Trifunovic D, Vavlukis M, de Wit C, Badimon L (2020) ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on ‘coronary microvascular dysfunction in cardiovascular disease.’ Cardiovasc Res 116:741–755. https://doi.org/10.1093/cvr/cvaa003 - PubMed
  171. Page BJ, Banas MD, Suzuki G, Weil BR, Young RF, Fallavollita JA, Palka BA, Canty JM Jr (2015) Revascularization of chronic hibernating myocardium stimulates myocyte proliferation and partially reverses chronic adaptations to ischemia. J Am Coll Cardiol 65:684–697. https://doi.org/10.1016/j.jacc.2014.11.040 - PubMed
  172. Parrish DG, Ring WS, Bache RJ (1985) Myocardial perfusion in compensated and failing hypertrophied left ventricle. Am J Physiol Heart Circ Physiol 249:H534-539. https://doi.org/10.1152/ajpheart.1985.249.3.H534 - PubMed
  173. Pasupathy S, Lindahl B, Litwin P, Tavella R, Williams MJA, Air T, Zeitz C, Smilowitz NR, Reynolds HR, Eggers KM, Nordenskjold AM, Barr P, Jernberg T, Marfella R, Bainey K, Sodoon Alzuhairi K, Johnston N, Kerr A, Beltrame JF (2021) Survival in patients with suspected myocardial infarction with nonobstructive coronary arteries: a comprehensive systematic review and meta-analysis from the MINOCA Global Collaboration. Circ Cardiovasc Qual Outcomes 14:e007880. https://doi.org/10.1161/CIRCOUTCOMES.121.007880 - PubMed
  174. Paul M, Rahbar K, Gerss J, Kies P, Schober O, Schafers K, Breithardt G, Schulze-Bahr E, Wichter T, Schafers M (2012) Microvascular dysfunction in nonfailing arrhythmogenic right ventricular cardiomyopathy. Eur J Nucl Med Mol Imaging 39:416–420. https://doi.org/10.1007/s00259-011-1985-8 - PubMed
  175. Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271. https://doi.org/10.1016/j.jacc.2013.02.092 - PubMed
  176. Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O’Gara P, Stuckey DJ, Nikolaev VO, Diakonov I, Pannell L, Gong H, Sun H, Peters NS, Petrou M, Zheng Z, Gorelik J, Lyon AR, Harding SE (2012) High levels of circulating epinephrine trigger apical cardiodepression in a beta2-adrenergic receptor/Gi-dependent manner: a new model of takotsubo cardiomyopathy. Circulation 126:697–706. https://doi.org/10.1161/CIRCULATIONAHA.112.111591 - PubMed
  177. Pelliccia F, Kaski JC, Crea F, Camici PG (2017) Pathophysiology of Takotsubo syndrome. Circulation 135:2426–2441. https://doi.org/10.1161/CIRCULATIONAHA.116.027121 - PubMed
  178. Peretto G, Lazzeroni D, Sartorio CL, Camici PG (2017) Cardiotoxicity in oncology and coronary microcirculation: future challenges in theranostics. Front Biosci 22:1760–1773. https://doi.org/10.2741/4570 - PubMed
  179. Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, Selvanayagam JB, Neubauer S, Watkins H (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425. https://doi.org/10.1161/CIRCULATIONAHA.106.657023 - PubMed
  180. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81:1161–1172. https://doi.org/10.1161/01.cir.81.4.1161 - PubMed
  181. Pfeffer MA, Claggett B, Lewis EF, Granger CB, Kober L, Maggioni AP, Mann DL, McMurray JJV, Rouleau JL, Solomon SD, Steg PG, Berwanger O, Cikes M, De Pasquale CG, East C, Fernandez A, Jering K, Landmesser U, Mehran R, Merkely B, Vaghaiwalla Mody F, Petrie MC, Petrov I, Schou M, Senni M, Sim D, van der Meer P, Lefkowitz M, Zhou Y, Gong J, Braunwald E, Investigators P-M, Committees (2021) Angiotensin receptor-neprilysin inhibition in acute myocardial infarction. N Engl J Med 385:1845–1855. https://doi.org/10.1056/NEJMoa2104508 - PubMed
  182. Pieske B, Tschope C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G (2019) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 40:3297–3317. https://doi.org/10.1093/eurheartj/ehz641 - PubMed
  183. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, Escaned J, Koller A, Piek JJ, de Wit C (2015) Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J 36:3134–3146. https://doi.org/10.1093/eurheartj/ehv100 - PubMed
  184. Qin A, Thompson CL, Silverman P (2015) Predictors of late-onset heart failure in breast cancer patients treated with doxorubicin. J Cancer Surviv 9:252–259. https://doi.org/10.1007/s11764-014-0408-9 - PubMed
  185. Rahimtoola SH (1982) Coronary bypass surgery for chronic angina—1981. Circulation 65:225–241. https://doi.org/10.1161/01.cir.65.2.225 - PubMed
  186. Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72(Suppl V):V123–V135 - PubMed
  187. Rajagopalan S, Landrigan PJ (2021) Pollution and the Heart. N Engl J Med 385:1881–1892. https://doi.org/10.1056/NEJMra2030281 - PubMed
  188. Rajappan K, Rimoldi OE, Dutka DP, Ariff B, Pennell DJ, Sheridan DJ, Camici PG (2002) Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation 105:470–476. https://doi.org/10.1161/hc0402.102931 - PubMed
  189. Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH (1998) Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res 83:969–979. https://doi.org/10.1161/01.res.83.10.969 - PubMed
  190. Reinstadler SJ, Fuernau G, Eitel C, de Waha S, Desch S, Metzler B, Schuler G, Thiele H, Eitel I (2016) Shock index as a predictor of myocardial damage and clinical outcome in ST-elevation myocardial infarction. Circ J 80:924–930. https://doi.org/10.1253/circj.CJ-15-1135 - PubMed
  191. Reinstadler SJ, Stiermaier T, Reindl M, Feistritzer HJ, Fuernau G, Eitel C, Desch S, Klug G, Thiele H, Metzler B, Eitel I (2019) Intramyocardial haemorrhage and prognosis after ST-elevation myocardial infarction. Eur Heart J Cardiovasc Imaging 20:138–146. https://doi.org/10.1093/ehjci/jey101 - PubMed
  192. Reiter U, Reiter G, Manninger M, Adelsmayr G, Schipke J, Alogna A, Rajces A, Stalder AF, Greiser A, Muhlfeld C, Scherr D, Post H, Pieske B, Fuchsjager M (2016) Early-stage heart failure with preserved ejection fraction in the pig: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 18:63. https://doi.org/10.1186/s12968-016-0283-9 - PubMed
  193. Rengo G, Cannavo A, Liccardo D, Zincarelli C, de Lucia C, Pagano G, Komici K, Parisi V, Scala O, Agresta A, Rapacciuolo A, Perrone Filardi P, Ferrara N, Koch WJ, Trimarco B, Femminella GD, Leosco D (2013) Vascular endothelial growth factor blockade prevents the beneficial effects of beta-blocker therapy on cardiac function, angiogenesis, and remodeling in heart failure. Circ Heart Fail 6:1259–1267. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000329 - PubMed
  194. Rimoldi O, Rosen SD, Camici PG (2014) The blunting of coronary flow reserve in hypertension with left ventricular hypertrophy is transmural and correlates with systolic blood pressure. J Hypertens 32:2465–2471. https://doi.org/10.1097/HJH.0000000000000338 - PubMed
  195. Rosenbaum AN, Agre KE, Pereira NL (2020) Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 17:286–297. https://doi.org/10.1038/s41569-019-0284-0 - PubMed
  196. Ross J Jr (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83:1076–1083. https://doi.org/10.1161/01.cir.83.3.1076 - PubMed
  197. Rush CJ, Berry C, Oldroyd KG, Rocchiccioli JP, Lindsay MM, Touyz RM, Murphy CL, Ford TJ, Sidik N, McEntegart MB, Lang NN, Jhund PS, Campbell RT, McMurray JJV, Petrie MC (2021) Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. JAMA Cardiol 6:130–1143. https://doi.org/10.1001/jamacardio.2021.1825 - PubMed
  198. Sabbah HN, Shimoyama H, Kono T, Gupta RC, Sharov VG, Scicli G, Levine B, Goldstein S (1994) Effects of long-term monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation 89:2852–2859. https://doi.org/10.1161/01.cir.89.6.2852 - PubMed
  199. Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, Hawkins ET, Goldstein S (1991) A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol Heart Circ Physiol 29:H1379–H1384. https://doi.org/10.1152/ajpheart.1991.260.4.H1379 - PubMed
  200. Saito T, Maehara K, Tamagawa K, Oikawa Y, Niitsuma T, Saitoh S, Maruyama Y (2002) Alterations of endothelium-dependent and -independent regulation of coronary blood flow during heart failure. Am J Physiol Heart Circ Physiol 282:H80-86. https://doi.org/10.1152/ajpheart.2002.282.1.H80 - PubMed
  201. Samson WK, Yosten GLC, Remme CA (2022) A primer on obesity-related cardiomyopathy. Physiol Rev 102:1–6. https://doi.org/10.1152/physrev.00023.2021 - PubMed
  202. Sato A, Aonuma K, Nozato T, Sekiguchi Y, Okazaki O, Kubota K, Hiroe M (2008) Stunned myocardium in transient left ventricular apical ballooning: a serial study of dual I-123 BMIPP and Tl-201 SPECT. J Nucl Cardiol 15:671–679. https://doi.org/10.1016/j.nuclcard.2008.03.010 - PubMed
  203. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221. https://doi.org/10.1056/NEJMoa060186 - PubMed
  204. Schafer S, Kelm M, Mingers S, Strauer BE (2002) Left ventricular remodeling impairs coronary flow reserve in hypertensive patients. J Hypertens 20:1431–1437. https://doi.org/10.1097/00004872-200207000-00031 - PubMed
  205. Scheler S, Motz W, Strauer BE (1994) Mechanism of angina pectoris in patients with systemic hypertension and normal epicardial coronary arteries by arteriogram. Am J Cardiol 73:478–482. https://doi.org/10.1016/0002-9149(94)90678-5 - PubMed
  206. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, May HI, Wang ZV, Hill TM, Mammen PPA, Huang J, Lee DI, Hahn VS, Sharma K, Kass DA, Lavandero S, Gillette TG, Hill JA (2019) Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568:351–356. https://doi.org/10.1038/s41586-019-1100-z - PubMed
  207. Schulz R, Guth BD, Heusch G (1991) No effect of coronary perfusion on regional myocardial function within the autoregulatory range in pigs: evidence against the Gregg phenomenon. Circulation 83:1390–1403. https://doi.org/10.1161/01.CIR.83.4.1390 - PubMed
  208. Schulz R, Janssen F, Guth BD, Heusch G (1991) Effect of coronary hyperperfusion on regional myocardial function and oxygen consumption of stunned myocardium in pigs. Basic Res Cardiol 86:534–543. https://doi.org/10.1007/BF02190703 - PubMed
  209. Shannon RP, Komamura K, Shen YT, Bishop SP, Vatner SF (1993) Impaired regional subendocardial coronary flow reserve in conscious dogs with pacing-induced heart failure. Am J Physiol Heart Circ Physiol 265:H801–H809. https://doi.org/10.1152/ajpheart.1993.265.3.H801 - PubMed
  210. Sharif D, Matanis W, Sharif-Rasslan A, Rosenschein U (2016) Doppler echocardiographic myocardial stunning index predicts recovery of left ventricular systolic function after primary percutaneous coronary intervention. Echocardiography 33:1465–1471. https://doi.org/10.1111/echo.13305 - PubMed
  211. Sheiban I, Tonni S, Benussi P, Martini A, Trevi GP (1993) Left ventricular dysfunction following transient ischaemia induced by transluminal coronary angioplasty. Beneficial effects of calcium antagonists against post-ischaemic myocardial stunning. Eur Heart J 14(Suppl. A):14–21. https://doi.org/10.1093/eurheartj/14.suppl_a.14 - PubMed
  212. Shen Y-T, Kudej RK, Bishop SP, Vatner SF (1996) Inotropic reserve and histological appearance of hibernating myocardium in conscious pigs with ameroid-induced coronary stenosis. Basic Res Cardiol 91:479–485. https://doi.org/10.1007/BF00788729 - PubMed
  213. Shen Y-T, Vatner SF (1995) Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning. Circ Res 76:479–488. https://doi.org/10.1161/01.res.76.3.479 - PubMed
  214. Shikama N, Himi T, Yoshida K, Nakao M, Fujiwara M, Tamura T, Yamanouchi M, Nakagawa K, Kuwabara Y, Toyozaki T, Masuda Y (1999) Prognostic utility of myocardial blood flow assessed by N-13 ammonia positron emission tomography in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 84:434–439. https://doi.org/10.1016/s0002-9149(99)00329-x - PubMed
  215. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115:2108–2118. https://doi.org/10.1172/JCI24682 - PubMed
  216. Sinha A, Rahman H, Webb A, Shah AM, Perera D (2021) Untangling the pathophysiologic link between coronary microvascular dysfunction and heart failure with preserved ejection fraction. Eur Heart J 42:4431–4441. https://doi.org/10.1093/eurheartj/ehab653 - PubMed
  217. Skyschally A, Schulz R, Erbel R, Heusch G (2002) Reduced coronary and inotropic reserves with coronary microembolization. Am J Physiol Heart Circ Physiol 282:H611–H614. https://doi.org/10.1152/ajpheart.00797.2001 - PubMed
  218. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM, Rouleau JL, van Veldhuisen DJ, Zannad F, Zile MR, Desai AS, Claggett B, Jhund PS, Boytsov SA, Comin-Colet J, Cleland J, Dungen HD, Goncalvesova E, Katova T, Kerr Saraiva JF, Lelonek M, Merkely B, Senni M, Shah SJ, Zhou J, Rizkala AR, Gong J, Shi VC, Lefkowitz MP, Investigators P-H, Committees (2019) Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381:1609–1620. https://doi.org/10.1056/NEJMoa1908655 - PubMed
  219. Sorop O, Heinonen I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen ITN, Octavia Y, van Duin RWB, Stam K, van Geuns RJ, Wielopolski PA, Krestin GP, van den Meiracker AH, Verjans R, van Bilsen M, Danser AHJ, Paulus WJ, Cheng C, Linke WA, Joles JA, Verhaar MC, van der Velden J, Merkus D, Duncker DJ (2018) Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res 114:954–964. https://doi.org/10.1093/cvr/cvy038 - PubMed
  220. Spinale FG, Grine RC, Tempel GE, Crawford FA, Zile MR (1992) Alterations in the myocardial capillary vasculature accompany tachycardia-induced cardiomyopathy. Basic Res Cardiol 87:65–79. https://doi.org/10.1007/BF00795391 - PubMed
  221. Spinale FG, Tanaka R, Crawford FA, Zile MR (1992) Changes in myocardial blood flow during development of and recovery from tachycardia-induced cardiomyopathy. Circulation 85:717–729. https://doi.org/10.1161/01.cir.85.2.717 - PubMed
  222. Srivaratharajah K, Coutinho T, deKemp R, Liu P, Haddad H, Stadnick E, Davies RA, Chih S, Dwivedi G, Guo A, Wells GA, Bernick J, Beanlands R, Mielniczuk LM (2016) Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Heart Fail 9:e002562. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002562 - PubMed
  223. Stahl LD, Aversano TR, Becker LC (1986) Selective enhancement of function of stunned myocardium by increased flow. Circulation 74:843–851. https://doi.org/10.1161/01.CIR.74.4.843 - PubMed
  224. Stolen KQ, Kemppainen J, Kalliokoski KK, Hallsten K, Luotolahti M, Karanko H, Lehikoinen P, Viljanen T, Salo T, Airaksinen KE, Nuutila P, Knuuti J (2004) Myocardial perfusion reserve and oxidative metabolism contribute to exercise capacity in patients with dilated cardiomyopathy. J Card Fail 10:132–140. https://doi.org/10.1016/j.cardfail.2003.08.009 - PubMed
  225. Strauer BE (1984) The coronary circulation in hypertensive heart disease. Hypertension. https://doi.org/10.1161/01.hyp.6.6_pt_2.iii74 - PubMed
  226. Strauer BE (1988) Regression of myocardial and coronary vascular hypertrophy in hypertensive heart disease. J Cardiovasc Pharmacol 12(Suppl 4):S45-54. https://doi.org/10.1097/00005344-198806124-00009 - PubMed
  227. Sun D, Huang A, Zhao G, Bernstein R, Forfia P, Xu X, Koller A, Kaley G, Hintze TH (2000) Reduced NO-dependent arteriolar dilation during the development of cardiomyopathy. Am J Physiol Heart Circ Physiol 278:H461-468. https://doi.org/10.1152/ajpheart.2000.278.2.H461 - PubMed
  228. Suzuki G, Young RF, Leiker MM, Suzuki T (2016) Heart-derived stem cells in miniature swine with coronary microembolization: Novel ischemic cardiomyopathy model to assess the efficacy of cell-based therapy. Stem Cells Int 2016:6940195. https://doi.org/10.1155/2016/6940195 - PubMed
  229. Tada H, Egashira K, Yamamoto M, Usui M, Arai Y, Katsuda Y, Shimokawa H, Takeshita A (2001) Role of nitric oxide in regulation of coronary blood flow in response to increased metabolic demand in dogs with pacing-induced heart failure. Jpn Circ J 65:827–833. https://doi.org/10.1253/jcj.65.827 - PubMed
  230. Taddei S, Virdis A, Ghiadoni L, Mattei P, Sudano I, Bernini G, Pinto S, Salvetti A (1996) Menopause is associated with endothelial dysfunction in women. Hypertension 28:576–582. https://doi.org/10.1161/01.hyp.28.4.576 - PubMed
  231. Takayama T, Wada A, Tsutamoto T, Ohnishi M, Fujii M, Isono T, Horie M (2004) Contribution of vascular NAD(P)H oxidase to endothelial dysfunction in heart failure and the therapeutic effects of HMG-CoA reductase inhibitor. Circ J 68:1067–1075. https://doi.org/10.1253/circj.68.1067 - PubMed
  232. Tamagawa K, Saito T, Oikawa Y, Maehara K, Yaoita H, Maruyama Y (2005) Alterations of alpha-adrenergic modulations of coronary microvascular tone in dogs with heart failure. J Card Fail 11:388–395. https://doi.org/10.1016/j.cardfail.2005.01.003 - PubMed
  233. Tanaka M, Fujiwara H, Onodera T, Wu D-J, Matsuda M, Hamashima Y, Kawai C (1987) Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 75:1130–1139. https://doi.org/10.1161/01.cir.75.6.1130 - PubMed
  234. Tanimura K, Otake H, Kawamori H, Toba T, Nagasawa A, Nakano N, Takahashi Y, Fukuyama Y, Kozuki A, Shite J, Iwasaki M, Kuroda K, Takaya T, Hirata K (2021) Morphological plaque characteristics and clinical outcomes in patients with acute coronary syndrome and a cancer history. J Am Heart Assoc 10:e020243. https://doi.org/10.1161/JAHA.120.020243 - PubMed
  235. Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, Hainer J, Bibbo CF, Dorbala S, Blankstein R, Di Carli MF (2018) Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 39:840–849. https://doi.org/10.1093/eurheartj/ehx721 - PubMed
  236. Thaulow E, Guth BD, Heusch G, Gilpin E, Schulz R, Kröger K, Ross J Jr (1989) Characteristics of regional myocardial stunning after exercise in dogs with chronic coronary stenosis. Am J Physiol Heart Circ Physiol 257:H113–H119. https://doi.org/10.1152/ajpheart.1989.257.1.H113 - PubMed
  237. Thomas M, Sperry BW, Peri-Okonny P, Malik AO, McGhie AI, Saeed IM, Chan PS, Spertus JA, Thompson RC, Bateman TM, Patel KK (2021) Relative prognostic significance of positron emission tomography myocardial perfusion imaging markers in cardiomyopathy. Circ Cardiovasc Imaging 14:e012426. https://doi.org/10.1161/CIRCIMAGING.121.012426 - PubMed
  238. Thomas S, Fallavollita J, Borgers M, Canty J (2002) Dissociation of regional adaptations to ischemia and global myolysis in an accelerated swine model of chronic hibernating myocardium. Circ Res 91:970–977. https://doi.org/10.1161/01.RES.0000040396.79379.77 - PubMed
  239. Tona F, Montisci R, Iop L, Civieri G (2021) Role of coronary microvascular dysfunction in heart failure with preserved ejection fraction. Rev Cardiovasc Med 22:97–104. https://doi.org/10.31083/j.rcm.2021.01.277 - PubMed
  240. Topol EJ, Weiss JL, Brinker JA, Brin KP, Gottlieb SO, Becker LC, Bulkley BH, Chandra N, Flaherty JT, Gerstenblith G et al (1985) Regional wall motion improvement after coronary thrombolysis with recombinant tissue plasminogen activator: importance of coronary angioplasty. J Am Coll Cardiol 6:426–433. https://doi.org/10.1016/s0735-1097(85)80182-0 - PubMed
  241. Totzeck M, Schuler M, Stuschke M, Heusch G, Rassaf T (2019) Cardio-oncology—strategies for management of cancer-therapy related cardiovascular disease. Int J Cardiol 280:163–175. https://doi.org/10.1016/j.ijcard.2019.01.038 - PubMed
  242. Traverse JH, Chen Y-J, Crampton M, Voss S, Bache RJ (2001) Increased extravascular forces limit endothelium-dependent and -independent coronary vasodilation in congestive heart failure. Cardiovasc Res 52:454–461. https://doi.org/10.1016/s0008-6363(01)00392-3 - PubMed
  243. Traverse JH, Chen Y, Hou M, Bache RJ (2002) Inhibition of NO production increases myocardial blood flow and oxygen consumption in congestive heart failure. Am J Physiol Heart Circ Physiol 282:H2278–H2283. https://doi.org/10.1152/ajpheart.00504.2001 - PubMed
  244. Traverse JH, Chen Y, Hou M, Li Y, Bache RJ (2007) Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure. Circ Res 100:1643–1649. https://doi.org/10.1161/CIRCRESAHA.107.150219 - PubMed
  245. Traverse JH, Melchert P, Pierpont GL, Jones B, Crampton M, Bache RJ (1999) Regulation of myocardial blood flow by oxygen consumption is maintained in the failing heart during exercise. Circ Res 84:401–408. https://doi.org/10.1161/01.res.84.4.401 - PubMed
  246. Treasure CB, Vita JA, Cox DA, Fish RD, Gordon JB, Mudge GH, Colucci WS, Sutton MG, Selwyn AP, Alexander RW et al (1990) Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 81:772–779. https://doi.org/10.1161/01.cir.81.3.772 - PubMed
  247. Triana JF, Bolli R (1991) Decreased flow reserve in “stunned” myocardium after a 10-min coronary occlusion. Am J Physiol Heart Circ Physiol 261:H793–H804. https://doi.org/10.1152/ajpheart.1991.261.3.H793 - PubMed
  248. Trochu J-N, Mital S, Zhang X, Xu X, Ochoa M, Liao JK, Recchia FA, Hintze T (2003) Preservation of NO production by statins in the treatment of heart failure. Cardiovasc Res 60:250–258. https://doi.org/10.1016/j.cardiores.2003.08.003 - PubMed
  249. Tschope C, Ammirati E, Bozkurt B, Caforio ALP, Cooper LT, Felix SB, Hare JM, Heidecker B, Heymans S, Hubner N, Kelle S, Klingel K, Maatz H, Parwani AS, Spillmann F, Starling RC, Tsutsui H, Seferovic P, Van Linthout S (2021) Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol 18:169–193. https://doi.org/10.1038/s41569-020-00435-x - PubMed
  250. Ubachs JF, Engblom H, Koul S, Kanski M, Andersson P, van der Pals J, Carlsson M, Erlinge D, Arheden H (2013) Myocardium at risk can be determined by ex vivo T2-weighted magnetic resonance imaging even in the presence of gadolinium: comparison to myocardial perfusion single photon emission computed tomography. Eur Heart J Cardiovasc Imaging 14:261–268. https://doi.org/10.1093/ehjci/jes142 - PubMed
  251. Ueno M, Kawashima S, Ikeoka K, Iwasaki T (1997) The delayed recovery of impaired endothelium dependent vasodilatory response after hemodynamic improvement in dogs with congestive heart failure. Jpn Circ J 61:936–942. https://doi.org/10.1253/jcj.61.936 - PubMed
  252. Uren NG, Crake T, Lefroy DC, deSilva R, Davies GJ, Maseri A (1993) Delayed recovery of coronary resistive vessel function after coronary angioplasty. J Am Coll Cardiol 21:612–621. https://doi.org/10.1016/0735-1097(93)90092-f - PubMed
  253. van den Heuvel AF, Bax JJ, Blanksma PK, Vaalburg W, Crijns HJ, van Veldhuisen DJ (2002) Abnormalities in myocardial contractility, metabolism and perfusion reserve in non-stenotic coronary segments in heart failure patients. Cardiovasc Res 55:97–103. https://doi.org/10.1016/s0008-6363(02)00331-0 - PubMed
  254. van den Heuvel AF, Blanksma PK, Siebelink HM, van Wijk LM, Boomsma F, Vaalburg W, Crijns HJ, van Veldhuisen DJ (2001) Impairment of myocardial blood flow reserve in patients with asymptomatic left ventricular dysfunction: effects of ACE-inhibition with perindopril. Int J Cardiovasc Imaging 17:353–359. https://doi.org/10.1023/a:1011971800052 - PubMed
  255. van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A, Cottin Y, Atar D, Buser P, Wu E, Lee D, Bodi V, Klug G, Metzler B, Delewi R, Bernhardt P, Rottbauer W, Boersma E, Zijlstra F, van Geuns RJ (2014) Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging 7:930–939. https://doi.org/10.1016/j.jcmg.2014.05.010 - PubMed
  256. van Veldhuisen DJ, van den Heuvel AF, Blanksma PK, Crijns HJ (1998) Ischemia and left ventricular dysfunction: a reciprocal relation? J Cardiovasc Pharmacol 32(Suppl 1):S46-51. https://doi.org/10.1097/00005344-199800003-00008 - PubMed
  257. van Wolferen SA, Marcus JT, Westerhof N, Spreeuwenberg MD, Marques KM, Bronzwaer JG, Henkens IR, Gan CT, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2008) Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J 29:120–127. https://doi.org/10.1093/eurheartj/ehm567 - PubMed
  258. Vanoverschelde J-LJ, Wijns W, Depré C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA (1993) Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral- dependent myocardium. Circulation 87:1513–1523. https://doi.org/10.1161/01.cir.87.5.1513 - PubMed
  259. Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, Panza JA, Michler RE, Bonow RO, Doenst T, Petrie MC, Oh JK, She L, Moore VL, Desvigne-Nickens P, Sopko G, Rouleau JL, Investigators S (2016) Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 374:1511–1520. https://doi.org/10.1056/NEJMoa1602001 - PubMed
  260. Vitale C, Rosano GM, Kaski JC (2016) Role of coronary microvascular dysfunction in takotsubo cardiomyopathy. Circ J 80:299–305. https://doi.org/10.1253/circj.CJ-15-1364 - PubMed
  261. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW, Suzuki YJ, Gladwin M, Denholm EM, Gail DB (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114:1883–1891. https://doi.org/10.1161/CIRCULATIONAHA.106.632208 - PubMed
  262. Vogel-Claussen J, Skrok J, Shehata ML, Singh S, Sibley CT, Boyce DM, Lechtzin N, Girgis RE, Mathai SC, Goldstein TA, Zheng J, Lima JA, Bluemke DA, Hassoun PM (2011) Right and left ventricular myocardial perfusion reserves correlate with right ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension. Radiology 258:119–127. https://doi.org/10.1148/radiol.10100725 - PubMed
  263. Vogt M, Strauer BE (1995) Systolic ventricular dysfunction and heart failure due to coronary microangiopathy in hypertensive heart disease. Am J Cardiol 76:48D-53D. https://doi.org/10.1016/S0002-9149(99)80492-5 - PubMed
  264. Walsh R, Offerhaus JA, Tadros R, Bezzina CR (2021) Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol. https://doi.org/10.1038/s41569-021-00608-2 - PubMed
  265. Wang J, Seyedi N, Xu XB, Wolin MS, Hintze TH (1994) Defective endothelium-mediated control of coronary circulation in conscious dogs after heart failure. Am J Physiol Heart Circ Physiol 266:H670–H680. https://doi.org/10.1152/ajpheart.1994.266.2.H670 - PubMed
  266. White CI, Jansen MA, McGregor K, Mylonas KJ, Richardson RV, Thomson A, Moran CM, Seckl JR, Walker BR, Chapman KE, Gray GA (2016) Cardiomyocyte and vascular smooth muscle-independent 11beta-hydroxysteroid dehydrogenase 1 amplifies infarct expansion, hypertrophy, and the development of heart failure after myocardial infarction in male mice. Endocrinology 157:346–357. https://doi.org/10.1210/en.2015-1630 - PubMed
  267. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC (2005) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352:539–548. https://doi.org/10.1056/NEJMoa043046 - PubMed
  268. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JA (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765–772. https://doi.org/10.1161/01.cir.97.8.765 - PubMed
  269. Yamamoto M, Egashira K, Arimura K-I, Tada H, Shimokawa H, Takeshita A (2000) Coronary vascular K - PubMed
  270. Yoshida T, Hibino T, Kako N, Murai S, Oguri M, Kato K, Yajima K, Ohte N, Yokoi K, Kimura G (2007) A pathophysiologic study of tako-tsubo cardiomyopathy with F-18 fluorodeoxyglucose positron emission tomography. Eur Heart J 28:2598–2604. https://doi.org/10.1093/eurheartj/ehm401 - PubMed
  271. Zamorano J (2016) An ESC position paper on cardio-oncology. Eur Heart J 37:2739–2740. https://doi.org/10.1093/eurheartj/ehw359 - PubMed
  272. Zelis JM, Tonino PAL, Pijls NHJ, De Bruyne B, Kirkeeide RL, Gould KL, Johnson NP (2020) Coronary microcirculation in aortic stenosis: pathophysiology, invasive assessment, and future directions. J Interv Cardiol 2020:4603169. https://doi.org/10.1155/2020/4603169 - PubMed
  273. Zhang C, Rogers P, Merkus D, Muller-Delp J, Tiefenbacher C, Potter B, Knudson J, Rocic P, Chilian W (2011) Regulation of coronary microvascular resistance in health and disease. Compr Physiol 12:521–549. https://doi.org/10.1002/cphy.cp020412 - PubMed
  274. Zhang J, Toher C, Erhard M, Zhang Y, Ugurbil K, Bache RJ, Lange T, Homans DC (1997) Relationships between myocardial bioenergetic and left ventricular function in hearts with volume-overload hypertrophy. Circulation 96:334–343. https://doi.org/10.1161/01.cir.96.1.334 - PubMed
  275. Zhang P, Hou M, Li Y, Xu X, Barsoum M, Chen Y, Bache RJ (2009) NADPH oxidase contributes to coronary endothelial dysfunction in the failing heart. Am J Physiol Heart Circ Physiol 296:H840–H846. https://doi.org/10.1152/ajpheart.00519.2008 - PubMed
  276. Zhang X, Schindler TH, Prior JO, Sayre J, Dahlbom M, Huang SC, Schelbert HR (2013) Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy. Eur J Nucl Med Mol Imaging 40:532–541. https://doi.org/10.1007/s00259-012-2311-9 - PubMed
  277. Zhao G, Joca HC, Nelson MT, Lederer WJ (2020) ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc Natl Acad Sci U S A 117:7461–7470. https://doi.org/10.1073/pnas.1922095117 - PubMed
  278. Zhao G, Shen W, Zhang X, Smith CJ, Hintze TH (1996) Loss of nitric oxide production in the coronary circulation after the development of dilated cardiomyopathy: a specific defect in the neural regulation of coronary blood flow. Clin Exp Pharmacol Physiol 23:715–721. https://doi.org/10.1111/j.1440-1681.1996.tb01764.x - PubMed
  279. Zhao X, Balaji P, Pachon R, Beniamen DM, Vatner DE, Graham RM, Vatner SF (2015) Overexpression of cardiomyocyte alpha1a-adrenergic receptors attenuates postinfarct remodeling by inducing angiogenesis through heterocellular signaling. Arterioscler Thromb Vasc Biol 35:2451–2459. https://doi.org/10.1161/ATVBAHA.115.305919 - PubMed
  280. Zhou W, Bajaj N, Gupta A, Sun YP, Divakaran S, Bibbo C, Hainer J, Taqueti V, Dorbala S, Blankstein R, Shah P, Kaneko T, Adler D, O’Gara P, Di Carli M (2021) Coronary microvascular dysfunction, left ventricular remodeling, and clinical outcomes in aortic stenosis. J Nucl Cardiol 28:579–588. https://doi.org/10.1007/s12350-019-01706-y - PubMed
  281. Zhou W, Brown JM, Bajaj NS, Chandra A, Divakaran S, Weber B, Bibbo CF, Hainer J, Taqueti VR, Dorbala S, Blankstein R, Adler D, O’Gara P, Di Carli MF (2020) Hypertensive coronary microvascular dysfunction: a subclinical marker of end organ damage and heart failure. Eur Heart J 41:2366–2375. https://doi.org/10.1093/eurheartj/ehaa191 - PubMed
  282. Zhou W, Sun YP, Divakaran S, Bajaj NS, Gupta A, Chandra A, Morgan V, Barrett L, Martell L, Bibbo CF, Hainer J, Lewis EF, Taqueti VR, Dorbala S, Blankstein R, Slomka P, Shah PB, Kaneko T, Adler DS, O’Gara P, Di Carli MF (2021) Association of myocardial blood flow reserve with adverse left ventricular remodeling in patients with aortic stenosis: the microvascular disease in aortic stenosis (MIDAS) Study. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2021.3396 - PubMed

Publication Types

Grant support