Display options
Share it on

JCI Insight. 2021 Jul 22;6(14). doi: 10.1172/jci.insight.148208.

TNFRSF13B polymorphisms counter microbial adaptation to enteric IgA.

JCI insight

Jeffrey L Platt, Mayara Garcia de Mattos Barbosa, Daniel Huynh, Adam R Lefferts, Juhi Katta, Cyra Kharas, Peter Freddolino, Christine M Bassis, Christiane Wobus, Raif Geha, Richard Bram, Gabriel Nunez, Nobuhiko Kamada, Marilia Cascalho

Affiliations

  1. Department of Microbiology and Immunology and Department of Surgery.
  2. Department of Surgery.
  3. Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics.
  4. Department of Medicine, and.
  5. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA.
  6. Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.
  7. Departments of Oncology, Pediatric Hematology/Oncology, and Pediatrics, Mayo Clinic, Rochester, Minnesota, USA.
  8. Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.

PMID: 34111031 PMCID: PMC8410086 DOI: 10.1172/jci.insight.148208

Abstract

TNFRSF13B encodes the transmembrane activator and CAML interactor (TACI) receptor, which drives plasma cell differentiation. Although TNFRSF13B supports host defense, dominant-negative TNFRSF13B alleles are common in humans and other species and only rarely associate with disease. We reasoned that the high frequency of disruptive TNFRSF13B alleles reflects balancing selection, the loss of function conferring advantage in some settings. Testing that concept, we investigated how a common human dominant-negative variant, TNFRSF13B A181E, imparts resistance to enteric pathogens. Mice engineered to express mono- or biallelic A144E variants of tnrsf13B, corresponding to A181E, exhibited a striking resistance to pathogenicity and transmission of Citrobacter rodentium, a murine pathogen that models enterohemorrhagic Escherichia coli, and resistance was principally owed to natural IgA deficiency in the intestine. In WT mice with gut IgA and in mutant mice reconstituted with enteric IgA obtained from WT mice, IgA induces LEE expression of encoded virulence genes, which confer pathogenicity and transmission. Taken together, our results show that C. rodentium and most likely other enteric organisms appropriated binding of otherwise protective antibodies to signal induction of the virulence program. Additionally, the high prevalence of TNFRSF13B dominant-negative variants reflects balancing selection.

Keywords: Bacterial infections; Genetic variation; Immunoglobulins; Immunology; Microbiology

References

  1. Blood. 2011 Nov 24;118(22):5832-9 - PubMed
  2. J Allergy Clin Immunol. 2009 Jun;123(6):1277-86.e5 - PubMed
  3. J Immunol. 2007 Aug 15;179(4):2282-8 - PubMed
  4. Br Med J. 1954 Feb 6;1(4857):290-4 - PubMed
  5. Immunity. 2018 Aug 21;49(2):211-224 - PubMed
  6. Genetics. 1992 Jun;131(2):479-91 - PubMed
  7. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W281-7 - PubMed
  8. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  9. Annu Rev Immunol. 2018 Apr 26;36:359-381 - PubMed
  10. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 - PubMed
  11. PLoS Pathog. 2010 May 13;6(5):e1000902 - PubMed
  12. J Clin Immunol. 2010 Jan;30(1):10-6 - PubMed
  13. Front Immunol. 2017 Jul 26;8:872 - PubMed
  14. J Allergy Clin Immunol. 2013 Feb;131(2):468-76 - PubMed
  15. J Allergy Clin Immunol. 2010 Dec;126(6):1234-41.e2 - PubMed
  16. J Allergy Clin Immunol. 2019 Apr;143(4):1575-1585.e4 - PubMed
  17. J Biol Chem. 2015 May 15;290(20):12630-49 - PubMed
  18. Science. 1972 Aug 25;177(4050):697-9 - PubMed
  19. Curr Opin Allergy Clin Immunol. 2012 Dec;12(6):602-8 - PubMed
  20. Cell Rep. 2017 Dec 19;21(12):3381-3389 - PubMed
  21. Blood. 2009 Feb 26;113(9):1967-76 - PubMed
  22. mBio. 2015 Nov 10;6(6):e01346-15 - PubMed
  23. Sci Rep. 2019 Sep 19;9(1):13574 - PubMed
  24. J Exp Med. 2006 Jan 23;203(1):21-6 - PubMed
  25. J Immunol Methods. 2009 Oct 31;350(1-2):183-93 - PubMed
  26. Nat Genet. 2005 Aug;37(8):829-34 - PubMed
  27. Nature. 1975 Jun 26;255(5511):745-6 - PubMed
  28. Cell. 2019 Mar 21;177(1):184-199 - PubMed
  29. J Gastroenterol. 2016 Mar;51(3):195-205 - PubMed
  30. Cell Microbiol. 2005 Dec;7(12):1697-706 - PubMed
  31. J Allergy Clin Immunol. 2017 Apr;139(4):1293-1301.e4 - PubMed
  32. Infect Immun. 1993 Jun;61(6):2486-92 - PubMed
  33. Immunol Rev. 2019 Jan;287(1):145-161 - PubMed
  34. J Exp Med. 2018 May 7;215(5):1397-1415 - PubMed
  35. J Immunol. 1999 Nov 15;163(10):5367-73 - PubMed
  36. Immunity. 2001 May;14(5):573-82 - PubMed
  37. J Clin Invest. 2013 Oct;123(10):4283-93 - PubMed
  38. Sci Transl Med. 2018 May 2;10(439): - PubMed
  39. J Exp Med. 1999 Oct 4;190(7):915-22 - PubMed
  40. Science. 2018 May 18;360(6390):795-800 - PubMed
  41. J Clin Invest. 2014 Nov;124(11):4857-66 - PubMed
  42. J Immunol. 2015 Jan 1;194(1):231-42 - PubMed
  43. Front Immunol. 2012 Jun 28;3:176 - PubMed
  44. Ann Clin Biochem. 1990 Nov;27 ( Pt 6):592-4 - PubMed
  45. Science. 2012 Jun 8;336(6086):1325-9 - PubMed
  46. Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761 - PubMed
  47. Microb Biotechnol. 2010 May;3(3):259-68 - PubMed
  48. BMC Bioinformatics. 2004 Aug 19;5:113 - PubMed
  49. Clin Immunol. 2004 Apr;111(1):93-7 - PubMed
  50. Curr Allergy Asthma Rep. 2006 Sep;6(5):357-62 - PubMed
  51. Nat Med. 2019 Jul;25(7):1110-1115 - PubMed
  52. Cell Host Microbe. 2013 Nov 13;14(5):571-81 - PubMed
  53. J Immunol. 1997 Dec 15;159(12):5795-801 - PubMed
  54. J Immunol Res. 2016;2016:8390356 - PubMed
  55. Blood. 2009 Sep 10;114(11):2254-62 - PubMed
  56. Science. 1999 Dec 10;286(5447):2156-9 - PubMed
  57. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D256-61 - PubMed
  58. J Immunol. 2009 Nov 1;183(9):5879-85 - PubMed
  59. Immunol Res. 2007;38(1-3):102-11 - PubMed
  60. Infect Immun. 2004 Jun;72(6):3315-24 - PubMed
  61. Infect Immun. 2007 Aug;75(8):4020-9 - PubMed

Publication Types

Grant support