Display options
Share it on

JCI Insight. 2021 Jun 17;6(14). doi: 10.1172/jci.insight.138835.

Colorectal cancer cells utilize autophagy to maintain mitochondrial metabolism for cell proliferation under nutrient stress.

JCI insight

Samantha N Devenport, Rashi Singhal, Megan D Radyk, Joseph G Taranto, Samuel A Kerk, Brandon Chen, Joshua W Goyert, Chesta Jain, Nupur K Das, Katherine Oravecz-Wilson, Li Zhang, Joel K Greenson, Y Eugene Chen, Scott A Soleimanpour, Pavan Reddy, Costas A Lyssiotis, Yatrik M Shah

Affiliations

  1. Cellular and Molecular Biology.
  2. Departments of Molecular & Integrative Physiology.
  3. Hematology & Oncology.
  4. Department of Pathology.
  5. Cardiovascular Center.
  6. Metabolism, Endocrinology & Diabetes.
  7. Rogel Cancer Center, and.
  8. Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor Michigan, USA.

PMID: 34138755 PMCID: PMC8328084 DOI: 10.1172/jci.insight.138835

Abstract

Cancer cells reprogram cellular metabolism to maintain adequate nutrient pools to sustain proliferation. Moreover, autophagy is a regulated mechanism to break down dysfunctional cellular components and recycle cellular nutrients. However, the requirement for autophagy and the integration in cancer cell metabolism is not clear in colon cancer. Here, we show a cell-autonomous dependency of autophagy for cell growth in colorectal cancer. Loss of epithelial autophagy inhibits tumor growth in both sporadic and colitis-associated cancer models. Genetic and pharmacological inhibition of autophagy inhibits cell growth in colon cancer-derived cell lines and patient-derived enteroid models. Importantly, normal colon epithelium and patient-derived normal enteroid growth were not decreased following autophagy inhibition. To couple the role of autophagy to cellular metabolism, a cell culture screen in conjunction with metabolomic analysis was performed. We identified a critical role of autophagy to maintain mitochondrial metabolites for growth. Loss of mitochondrial recycling through inhibition of mitophagy hinders colon cancer cell growth. These findings have revealed a cell-autonomous role of autophagy that plays a critical role in regulating nutrient pools in vivo and in cell models, and it provides therapeutic targets for colon cancer.

Keywords: Colorectal cancer; Gastroenterology; Oncology

References

  1. Biomol Ther (Seoul). 2017 May 1;25(3):315-320 - PubMed
  2. Gut Microbes. 2018 Jul 4;9(4):374-381 - PubMed
  3. Cancer Biol Med. 2018 Feb;15(1):61-69 - PubMed
  4. Gastroenterology. 2014 Mar;146(3):630-42 - PubMed
  5. Genes Dev. 2011 Apr 15;25(8):795-800 - PubMed
  6. Oncotarget. 2016 Apr 19;7(16):21235-46 - PubMed
  7. Anticancer Res. 2012 Sep;32(9):4091-6 - PubMed
  8. Nat Rev Cancer. 2007 Dec;7(12):961-7 - PubMed
  9. Cancer Res. 2015 Feb 1;75(3):544-53 - PubMed
  10. Gut. 2004 Aug;53(8):1137-44 - PubMed
  11. Nature. 2014 Oct 30;514(7524):628-32 - PubMed
  12. J Biol Chem. 2015 Oct 30;290(44):26549-61 - PubMed
  13. Am J Pathol. 2013 Aug;183(2):493-503 - PubMed
  14. Gastroenterology. 2019 Apr;156(5):1467-1482 - PubMed
  15. Nature. 2008 Nov 13;456(7219):259-63 - PubMed
  16. Curr Protoc Immunol. 2014 Feb 04;104:15.25.1-15.25.14 - PubMed
  17. Front Immunol. 2016 Jun 22;7:240 - PubMed
  18. Elife. 2016 Nov 17;5: - PubMed
  19. Cell Death Differ. 2021 Aug;28(8):2421-2435 - PubMed
  20. Genes Dev. 2007 Jul 1;21(13):1621-35 - PubMed
  21. Appl Environ Microbiol. 2018 Aug 31;84(18): - PubMed
  22. Autophagy. 2009 Feb;5(2):250-2 - PubMed
  23. Genes Dev. 2016 Aug 1;30(15):1704-17 - PubMed
  24. Nat Genet. 2007 Feb;39(2):207-11 - PubMed
  25. PLoS One. 2013;8(1):e54338 - PubMed
  26. Cancer Cell. 2006 Jul;10(1):51-64 - PubMed
  27. Nat Cell Biol. 2012 Jan 22;14(2):177-85 - PubMed
  28. Eur Rev Med Pharmacol Sci. 2019 Feb;23(3):1047-1054 - PubMed
  29. Genes Dev. 2011 Mar 1;25(5):460-70 - PubMed
  30. Mol Biol Cell. 2011 Jan 15;22(2):165-78 - PubMed
  31. Cell Host Microbe. 2013 Jun 12;13(6):723-34 - PubMed
  32. Development. 2018 Mar 14;145(6): - PubMed
  33. Genes Dev. 2019 Feb 1;33(3-4):150-165 - PubMed
  34. J Biol Chem. 2018 Sep 21;293(38):14891-14904 - PubMed
  35. Science. 2017 Nov 10;358(6364):807-813 - PubMed
  36. Autophagy. 2018;14(8):1460-1461 - PubMed
  37. Cell Host Microbe. 2018 Feb 14;23(2):191-202.e4 - PubMed
  38. Oncotarget. 2017 May 2;8(33):54604-54615 - PubMed
  39. Lab Anim (NY). 2017 Mar 22;46(4):114-122 - PubMed
  40. Oncotarget. 2015 Oct 13;6(31):30787-802 - PubMed
  41. Metabolomics. 2019 Jul 9;15(7):103 - PubMed
  42. Cancer Res. 2013 Jul 15;73(14):4395-405 - PubMed
  43. Dev Cell. 2018 Mar 12;44(5):555-565.e3 - PubMed
  44. Nat Methods. 2014 Aug;11(8):783-784 - PubMed
  45. Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15145-50 - PubMed
  46. Nat Cell Biol. 2015 Aug;17(8):1062-73 - PubMed
  47. Cell. 2018 Jun 28;174(1):88-101.e16 - PubMed
  48. Genes Dev. 2011 Apr 1;25(7):717-29 - PubMed
  49. Nucleic Acids Res. 2018 Jul 2;46(W1):W486-W494 - PubMed
  50. Mol Biol Cell. 2008 Nov;19(11):4651-9 - PubMed
  51. J Biol Chem. 2015 Aug 14;290(33):20511-26 - PubMed
  52. Sci Rep. 2017 Jun 1;7(1):2784 - PubMed
  53. Mol Cell. 2020 Feb 6;77(3):645-655.e7 - PubMed
  54. Cell Metab. 2019 Jun 4;29(6):1390-1399.e6 - PubMed
  55. Nature. 2012 Jul 18;487(7407):330-7 - PubMed
  56. J Biol Chem. 2013 Jan 11;288(2):1099-113 - PubMed
  57. Cell Rep. 2017 Sep 19;20(12):2846-2859 - PubMed
  58. Cell. 2017 Jul 27;170(3):548-563.e16 - PubMed
  59. Curr Biol. 2018 Feb 19;28(4):R170-R185 - PubMed
  60. Nat Cell Biol. 2013 Jul;15(7):741-50 - PubMed
  61. Cell Biochem Funct. 2018 Mar;36(2):65-79 - PubMed
  62. Nature. 2015 Aug 20;524(7565):309-314 - PubMed
  63. Cancer Res. 2007 Oct 15;67(20):9721-30 - PubMed
  64. PLoS One. 2018 Mar 28;13(3):e0192499 - PubMed

Publication Types

Grant support