Display options
Share it on

Aging Cell. 2022 Jan;21(1):e13531. doi: 10.1111/acel.13531. Epub 2021 Dec 14.

Regulatory role of cathepsin L in induction of nuclear laminopathy in Alzheimer's disease.

Aging cell

Md Imamul Islam, Pandian Nagakannan, Tetiana Shcholok, Fabio Contu, Sabine Mai, Benedict C Albensi, Marc R Del Bigio, Jun-Feng Wang, Md Golam Sharoar, Riqiang Yan, Il-Seon Park, Eftekhar Eftekharpour

Affiliations

  1. Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
  2. Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
  3. Cell Biology, Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada.
  4. St Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB, Canada.
  5. Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.
  6. Department of Pathology, Shared Health Manitoba, University of Manitoba, Winnipeg, MB, Canada.
  7. Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
  8. Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut, USA.
  9. Department of Cellular and Molecular Medicine, Chosun University, Gwangju, South Korea.

PMID: 34905652 DOI: 10.1111/acel.13531

Abstract

Experimental and clinical therapies in the field of Alzheimer's disease (AD) have focused on elimination of extracellular amyloid beta aggregates or prevention of cytoplasmic neuronal fibrillary tangles formation, yet these approaches have been generally ineffective. Interruption of nuclear lamina integrity, or laminopathy, is a newly identified concept in AD pathophysiology. Unraveling the molecular players in the induction of nuclear lamina damage may lead to identification of new therapies. Here, using 3xTg and APP/PS1 mouse models of AD, and in vitro model of amyloid beta42 (Aβ42) toxicity in primary neuronal cultures and SH-SY5Y neuroblastoma cells, we have uncovered a key role for cathepsin L in the induction of nuclear lamina damage. The applicability of our findings to AD pathophysiology was validated in brain autopsy samples from patients. We report that upregulation of cathepsin L is an important process in the induction of nuclear lamina damage, shown by lamin B1 cleavage, and is associated with epigenetic modifications in AD pathophysiology. More importantly, pharmacological targeting and genetic knock out of cathepsin L mitigated Aβ42 induced lamin B1 degradation and downstream structural and molecular changes. Affirming these findings, overexpression of cathepsin L alone was sufficient to induce lamin B1 cleavage. The proteolytic activity of cathepsin L on lamin B1 was confirmed using mass spectrometry. Our research identifies cathepsin L as a newly identified lamin B1 protease and mediator of laminopathy observed in AD. These results uncover a new aspect in the pathophysiology of AD that can be pharmacologically prevented, raising hope for potential therapeutic interventions.

© 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.

Keywords: acetylation; amyloid beta; chromatin; histone; lysosomal membrane permeabilization; methylation; nuclear lamina; super-resolution microscopy

References

  1. Arranz, A. M., & De Strooper, B. (2019). The role of astroglia in Alzheimer's disease: Pathophysiology and clinical implications. The Lancet Neurology, 18(4), 406-414. https://doi.org/10.1016/S1474-4422(18)30490-3 - PubMed
  2. Bertero, A., Fields, P. A., Smith, A. S. T., Leonard, A., Beussman, K., Sniadecki, N. J., Kim, D.-H., Tse, H.-F., Pabon, L., Shendure, J., Noble, W. S., & Murry, C. E. (2019). Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. Journal of Cell Biology, 218(9), 2919-2944. https://doi.org/10.1083/jcb.201902117 - PubMed
  3. Boya, P., & Kroemer, G. (2008). Lysosomal membrane permeabilization in cell death. Oncogene, 27(50), 6434-6451. https://doi.org/10.1038/onc.2008.310 - PubMed
  4. Broers, J. L., Ramaekers, F. C., Bonne, G., Yaou, R. B., & Hutchison, C. J. (2006). Nuclear lamins: Laminopathies and their role in premature ageing. Physiological Reviews, 86(3), 967-1008. https://doi.org/10.1152/physrev.00047.2005 - PubMed
  5. Butin-Israeli, V., Adam, S. A., Jain, N., Otte, G. L., Neems, D., Wiesmüller, L., Berger, S. L., & Goldman, R. D. (2015). Role of lamin b1 in chromatin instability. Molecular and Cellular Biology, 35(5), 884-898. https://doi.org/10.1128/MCB.01145-14 - PubMed
  6. Chang, K.-H., Multani, P. S., Sun, K.-H., Vincent, F., de Pablo, Y., Ghosh, S., Gupta, R., Lee, H.-P., Lee, H.-G., Smith, M. A., & Shah, K. (2011). Nuclear envelope dispersion triggered by deregulated Cdk5 precedes neuronal death. Molecular Biology of the Cell, 22(9), 1452-1462. https://doi.org/10.1091/mbc.E10-07-0654 - PubMed
  7. Chen, N. Y., Yang, Y. E., Weston, T. A., Belling, J. N., Heizer, P., Tu, Y., Kim, P., Edillo, L., Jonas, S. J., Weiss, P. S., Fong, L. G., & Young, S. G. (2019). An absence of lamin B1 in migrating neurons causes nuclear membrane ruptures and cell death. Proceedings of the National Academy of Sciences of the United States of America, 116(51), 25870-25879. https://doi.org/10.1073/pnas.1917225116 - PubMed
  8. Coffinier, C., Chang, S. Y., Nobumori, C., Tu, Y., Farber, E. A., Toth, J. I., Fong, L. G., & Young, S. G. (2010). Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 5076-5081. https://doi.org/10.1073/pnas.0908790107 - PubMed
  9. Cornelison, G. L., Levy, S. A., Jenson, T., & Frost, B. (2019). Tau-induced nuclear envelope invagination causes a toxic accumulation of mRNA in Drosophila. Aging Cell, 18(1), e12847. https://doi.org/10.1111/acel.12847 - PubMed
  10. Das, A., Grotsky, D. A., Neumann, M. A., Kreienkamp, R., Gonzalez-Suarez, I., Redwood, A. B., & Gonzalo, S. (2013). Lamin A Deltaexon9 mutation leads to telomere and chromatin defects but not genomic instability. Nucleus, 4(5), 410-419. https://doi.org/10.4161/nucl.26873 - PubMed
  11. Dias-Santagata, D., Fulga, T. A., Duttaroy, A., & Feany, M. B. (2007). Oxidative stress mediates tau-induced neurodegeneration in Drosophila. Journal of Clinical Investigation, 117(1), 236-245. https://doi.org/10.1172/JCI28769 - PubMed
  12. Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J. E., Lee, A. Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., Diao, Y., Liang, J., Zhao, H., Lobanenkov, V. V., Ecker, J. R., Thomson, J. A., & Ren, B. (2015). Chromatin architecture reorganization during stem cell differentiation. Nature, 518(7539), 331-336. https://doi.org/10.1038/nature14222 - PubMed
  13. Dou, Z., Xu, C., Donahue, G., Shimi, T., Pan, J.-A., Zhu, J., Ivanov, A., Capell, B. C., Drake, A. M., Shah, P. P., Catanzaro, J. M., Daniel Ricketts, M., Lamark, T., Adam, S. A., Marmorstein, R., Zong, W.-X., Johansen, T., Goldman, R. D., Adams, P. D., & Berger, S. L. (2015). Autophagy mediates degradation of nuclear lamina. Nature, 527(7576), 105-109. https://doi.org/10.1038/nature15548 - PubMed
  14. Duncan, E. M., Muratore-Schroeder, T. L., Cook, R. G., Garcia, B. A., Shabanowitz, J., Hunt, D. F., & Allis, C. D. (2008). Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell, 135(2), 284-294. https://doi.org/10.1016/j.cell.2008.09.055 - PubMed
  15. Duyckaerts, C., Delatour, B., & Potier, M. C. (2009). Classification and basic pathology of Alzheimer disease. Acta Neuropathologica, 118(1), 5-36. https://doi.org/10.1007/s00401-009-0532-1 - PubMed
  16. Ehrnhoefer, D. E., Skotte, N. H., Savill, J., Nguyen, Y. T. N., Ladha, S., Cao, L.-P., Dullaghan, E., & Hayden, M. R. (2011). A quantitative method for the specific assessment of caspase-6 activity in cell culture. PLoS One, 6(11), e27680. https://doi.org/10.1371/journal.pone.0027680 - PubMed
  17. Estus, S., Tucker, H. M., van Rooyen, C., Wright, S., Brigham, E. F., Wogulis, M., & Rydel, R. E. (1997). Aggregated amyloid-beta protein induces cortical neuronal apoptosis and concomitant "apoptotic" pattern of gene induction. Journal of Neuroscience, 17(20), 7736-7745. - PubMed
  18. Frost, B. (2016). Alzheimer's disease: An acquired neurodegenerative laminopathy. Nucleus, 7(3), 275-283. https://doi.org/10.1080/19491034.2016.1183859 - PubMed
  19. Frost, B., Bardai, F. H., & Feany, M. B. (2016). Lamin dysfunction mediates neurodegeneration in tauopathies. Current Biology, 26(1), 129-136. https://doi.org/10.1016/j.cub.2015.11.039 - PubMed
  20. Frost, B., Hemberg, M., Lewis, J., & Feany, M. B. (2014). Tau promotes neurodegeneration through global chromatin relaxation. Nature Neuroscience, 17(3), 357-366. https://doi.org/10.1038/nn.3639 - PubMed
  21. Gerace, L., & Blobel, G. (1980). The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell, 19(1), 277-287. https://doi.org/10.1016/0092-8674(80)90409-2 - PubMed
  22. Goulet, B., Baruch, A., Moon, N.-S., Poirier, M., Sansregret, L. L., Erickson, A., Bogyo, M., & Nepveu, A. (2004). A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Molecular Cell, 14(2), 207-219. https://doi.org/10.1016/s1097-2765(04)00209-6 - PubMed
  23. Grotsky, D. A., Gonzalez-Suarez, I., Novell, A., Neumann, M. A., Yaddanapudi, S. C., Croke, M., Martinez-Alonso, M., Redwood, A. B., Ortega-Martinez, S., Feng, Z., Lerma, E., Ramon y Cajal, T., Zhang, J., Matias-Guiu, X., Dusso, A., & Gonzalo, S. (2013). BRCA1 loss activates cathepsin L-mediated degradation of 53BP1 in breast cancer cells. Journal of Cell Biology, 200(2), 187-202. https://doi.org/10.1083/jcb.201204053 - PubMed
  24. Guglielmotto, M., Monteleone, D., Piras, A., Valsecchi, V., Tropiano, M., Ariano, S., & Tamagno, E. (2014). Abeta1-42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy, 10(10), 1827-1843. https://doi.org/10.4161/auto.30001 - PubMed
  25. Halawani, D., Tessier, S., Anzellotti, D., Bennett, D. A., Latterich, M., & LeBlanc, A. C. (2010). Identification of Caspase-6-mediated processing of the valosin containing protein (p97) in Alzheimer's disease: A novel link to dysfunction in ubiquitin proteasome system-mediated protein degradation. Journal of Neuroscience, 30(17), 6132-6142. https://doi.org/10.1523/JNEUROSCI.5874-09.2010 - PubMed
  26. Hardy, J. A., & Higgins, G. A. (1992). Alzheimer's disease: The amyloid cascade hypothesis. Science, 256(5054), 184-185. https://doi.org/10.1126/science.1566067 - PubMed
  27. Hohn, A., Tramutola, A., & Cascella, R. (2020). Proteostasis failure in neurodegenerative diseases: Focus on oxidative stress. Oxidative Medicine and Cellular Longevity, 2020, 5497046. https://doi.org/10.1155/2020/5497046 - PubMed
  28. Hung, C. O. Y., & Livesey, F. J. (2018). Altered gamma-Secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer's disease. Cell Reports, 25(13), 3647-3660 e3642. https://doi.org/10.1016/j.celrep.2018.11.095 - PubMed
  29. Islam, M. I., Nagakannan, P., Ogungbola, O., Djordjevic, J., Albensi, B. C., & Eftekharpour, E. (2019). Thioredoxin system as a gatekeeper in caspase-6 activation and nuclear lamina integrity: Implications for Alzheimer's disease. Free Radical Biology and Medicine, 134, 567-580. https://doi.org/10.1016/j.freeradbiomed.2019.02.010 - PubMed
  30. Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., … Silverberg, N. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia: the Journal of the Alzheimer's Association, 14(4), 535-562. https://doi.org/10.1016/j.jalz.2018.02.018 - PubMed
  31. Kivinen, K., Kallajoki, M., & Taimen, P. (2005). Caspase-3 is required in the apoptotic disintegration of the nuclear matrix. Experimental Cell Research, 311(1), 62-73. https://doi.org/10.1016/j.yexcr.2005.08.006 - PubMed
  32. Klein, H.-U., McCabe, C., Gjoneska, E., Sullivan, S. E., Kaskow, B. J., Tang, A., Smith, R. V., Xu, J., Pfenning, A. R., Bernstein, B. E., Meissner, A., Schneider, J. A., Mostafavi, S., Tsai, L.-H., Young-Pearse, T. L., Bennett, D. A., & De Jager, P. L. (2019). Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains. Nature Neuroscience, 22(1), 37-46. https://doi.org/10.1038/s41593-018-0291-1 - PubMed
  33. Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., & Dekker, J. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950), 289-293. https://doi.org/10.1126/science.1181369 - PubMed
  34. Lindenboim, L., Zohar, H., Worman, H. J., & Stein, R. (2020). The nuclear envelope: Target and mediator of the apoptotic process. Cell Death Discovery, 6, 29. https://doi.org/10.1038/s41420-020-0256-5 - PubMed
  35. Long, J. M., & Holtzman, D. M. (2019). Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 179(2), 312-339. https://doi.org/10.1016/j.cell.2019.09.001 - PubMed
  36. Lovell, M. A., Xie, C., Gabbita, S. P., & Markesbery, W. R. (2000). Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radical Biology and Medicine, 28(3), 418-427. https://doi.org/10.1016/s0891-5849(99)00258-0 - PubMed
  37. Luo, Q., Lin, Y. X., Yang, P. P., Wang, Y., Qi, G. B., Qiao, Z. Y., & Wang, H. (2018). A self-destructive nanosweeper that captures and clears amyloid beta-peptides. Nature Communications, 9(1), 1802. https://doi.org/10.1038/s41467-018-04255-z - PubMed
  38. Malhas, A. N., Lee, C. F., & Vaux, D. J. (2009). Lamin B1 controls oxidative stress responses via Oct-1. Journal of Cell Biology, 184(1), 45-55. https://doi.org/10.1083/jcb.200804155 - PubMed
  39. Mi, W., Pawlik, M., Sastre, M., Jung, S. S., Radvinsky, D. S., Klein, A. M., & Levy, E. (2007). Cystatin C inhibits amyloid-beta deposition in Alzheimer's disease mouse models. Nature Genetics, 39(12), 1440-1442. https://doi.org/10.1038/ng.2007.29 - PubMed
  40. Montaser, M., Lalmanach, G., & Mach, L. (2002). CA-074, but not its methyl ester CA-074Me, is a selective inhibitor of cathepsin B within living cells. Biological Chemistry, 383(7-8), 1305-1308. https://doi.org/10.1515/BC.2002.147 - PubMed
  41. Mueller-Steiner, S., Zhou, Y., Arai, H., Roberson, E. D., Sun, B., Chen, J., Wang, X., Yu, G., Esposito, L., Mucke, L., & Gan, L. I. (2006). Antiamyloidogenic and neuroprotective functions of cathepsin B: Implications for Alzheimer's disease. Neuron, 51(6), 703-714. https://doi.org/10.1016/j.neuron.2006.07.027 - PubMed
  42. Nixon, R. A. (2013). The role of autophagy in neurodegenerative disease. Nature Medicine, 19(8), 983-997. https://doi.org/10.1038/nm.3232 - PubMed
  43. Nixon, R. A. (2017). Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: Inseparable partners in a multifactorial disease. The FASEB Journal, 31(7), 2729-2743. https://doi.org/10.1096/fj.201700359 - PubMed
  44. Noonan, J., Tanveer, R., Klompas, A., Gowran, A., McKiernan, J., & Campbell, V. A. (2010). Endocannabinoids prevent beta-amyloid-mediated lysosomal destabilization in cultured neurons. Journal of Biological Chemistry, 285(49), 38543-38554. https://doi.org/10.1074/jbc.M110.162040 - PubMed
  45. Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., & LaFerla, F. M. (2003). Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron, 39(3), 409-421. https://doi.org/10.1016/s0896-6273(03)00434-3 - PubMed
  46. Perlenfein, T. J., & Murphy, R. M. (2017). A mechanistic model to predict effects of cathepsin B and cystatin C on beta-amyloid aggregation and degradation. Journal of Biological Chemistry, 292(51), 21071-21082. https://doi.org/10.1074/jbc.M117.811448 - PubMed
  47. Raffel, J., Bhattacharyya, A. K., Gallegos, A., Cui, H., Einspahr, J. G., Alberts, D. S., & Powis, G. (2003). Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. Journal of Laboratory and Clinical Medicine, 142(1), 46-51. https://doi.org/10.1016/S0022-2143(03)00068-4 - PubMed
  48. Ramasamy, V. S., Islam, M. I., Haque, M. A., Shin, S. Y., & Park, I. S. (2016). beta-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation. Biochimica et Biophysica Acta, 1863(6 Pt A), 1189-1199. https://doi.org/10.1016/j.bbamcr.2016.02.008 - PubMed
  49. Rao, L., Perez, D., & White, E. (1996). Lamin proteolysis facilitates nuclear events during apoptosis. Journal of Cell Biology, 135(6 Pt 1), 1441-1455. https://doi.org/10.1083/jcb.135.6.1441 - PubMed
  50. Reddy, K. L., Zullo, J. M., Bertolino, E., & Singh, H. (2008). Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature, 452(7184), 243-247. https://doi.org/10.1038/nature06727 - PubMed
  51. Righolt, C. H., Guffei, A., Knecht, H., Young, I. T., Stallinga, S., van Vliet, L. J., & Mai, S. (2014). Differences in nuclear DNA organization between lymphocytes, Hodgkin and Reed-Sternberg cells revealed by structured illumination microscopy. Journal of Cellular Biochemistry, 115(8), 1441-1448. https://doi.org/10.1002/jcb.24800 - PubMed
  52. Schirmer, E. C., & Gerace, L. (2004). The stability of the nuclear lamina polymer changes with the composition of lamin subtypes according to their individual binding strengths. Journal of Biological Chemistry, 279(41), 42811-42817. https://doi.org/10.1074/jbc.M407705200 - PubMed
  53. Selznick, L. A., Zheng, T. S., Flavell, R. A., Rakic, P., & Roth, K. A. (2000). Amyloid beta-induced neuronal death is bax-dependent but caspase-independent. Journal of Neuropathology and Experimental Neurology, 59(4), 271-279. https://doi.org/10.1093/jnen/59.4.271 - PubMed
  54. Stover, K. R., Campbell, M. A., Van Winssen, C. M., & Brown, R. E. (2015). Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer's disease. Behavioral Brain Research, 289, 29-38. https://doi.org/10.1016/j.bbr.2015.04.012 - PubMed
  55. Sun, W., Samimi, H., Gamez, M., Zare, H., & Frost, B. (2018). Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nature Neuroscience, 21(8), 1038-1048. https://doi.org/10.1038/s41593-018-0194-1 - PubMed
  56. Tamhane, T., Lllukkumbura, R., Lu, S., Maelandsmo, G. M., Haugen, M. H., & Brix, K. (2016). Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells. Biochimie, 122, 208-218. https://doi.org/10.1016/j.biochi.2015.09.003 - PubMed
  57. Vaz, M., & Silvestre, S. (2020). Alzheimer's disease: Recent treatment strategies. European Journal of Pharmacology, 887, 173554. https://doi.org/10.1016/j.ejphar.2020.173554 - PubMed
  58. Venojärvi, M., Korkmaz, A., Aunola, S., Hällsten, K., Virtanen, K., Marniemi, J., Halonen, J.-P., Hänninen, O., Nuutila, P., & Atalay, M. (2014). Decreased thioredoxin-1 and increased HSP90 expression in skeletal muscle in subjects with type 2 diabetes or impaired glucose tolerance. BioMed Research International, 2014, 386351. https://doi.org/10.1155/2014/386351 - PubMed
  59. Wang, C., Sun, B., Zhou, Y., Grubb, A., & Gan, L. (2012). Cathepsin B degrades amyloid-beta in mice expressing wild-type human amyloid precursor protein. Journal of Biological Chemistry, 287(47), 39834-39841. https://doi.org/10.1074/jbc.M112.371641 - PubMed
  60. Wang, Y., Wang, Y., Bharti, V., Zhou, H., Hoi, V., Tan, H., & Wang, J. F. (2019). Upregulation of thioredoxin-interacting protein in brain of amyloid-beta protein precursor/presenilin 1 transgenic mice and amyloid-beta treated neuronal cells. Journal of Alzheimer's Disease, 72(1), 139-150. https://doi.org/10.3233/JAD-190223 - PubMed
  61. Young, S. G., Jung, H. J., Lee, J. M., & Fong, L. G. (2014). Nuclear lamins and neurobiology. Molecular and Cellular Biology, 34(15), 2776-2785. https://doi.org/10.1128/MCB.00486-14 - PubMed
  62. Zhang, D., Beresford, P. J., Greenberg, A. H., & Lieberman, J. (2001). Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis. Proceedings of the National Academy of Sciences of the United States of America, 98(10), 5746-5751. https://doi.org/10.1073/pnas.101329598 - PubMed
  63. Zheng, X., Chu, F., Mirkin, B. L., Sudha, T., Mousa, S. A., & Rebbaa, A. (2008). Role of the proteolytic hierarchy between cathepsin L, cathepsin D and caspase-3 in regulation of cellular susceptibility to apoptosis and autophagy. Biochimica et Biophysica Acta, 1783(12), 2294-2300. https://doi.org/10.1016/j.bbamcr.2008.07.027 - PubMed
  64. Zhou, F., Xiong, X., Li, S., Liang, J., Zhang, X., Tian, M., & Li, Y. (2020). Enhanced autophagic retrograde axonal transport by dynein intermediate chain upregulation improves Abeta clearance and cognitive function in APP/PS1 double transgenic mice. Aging (Albany NY), 12(12), 12142-12159. https://doi.org/10.18632/aging.103382 - PubMed
  65. Zhou, L., Flores, J., Noel, A., Beauchet, O., Sjostrom, P. J., & LeBlanc, A. C. (2019). Methylene blue inhibits Caspase-6 activity, and reverses Caspase-6-induced cognitive impairment and neuroinflammation in aged mice. Neuropathologica Communications, 7(1), 210. https://doi.org/10.1186/s40478-019-0856-6 - PubMed
  66. Zullo, J. M., Demarco, I. A., Piqué-Regi, R., Gaffney, D. J., Epstein, C. B., Spooner, C. J., Luperchio, T. R., Bernstein, B. E., Pritchard, J. K., Reddy, K. L., & Singh, H. (2012). DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell, 149(7), 1474-1487. https://doi.org/10.1016/j.cell.2012.04.035 - PubMed

Publication Types

Grant support