Display options
Share it on

Hum Mol Genet. 2021 Nov 30;30(24):2469-2487. doi: 10.1093/hmg/ddab200.

Immortalized striatal precursor neurons from Huntington's disease patient-derived iPS cells as a platform for target identification and screening for experimental therapeutics.

Human molecular genetics

Sergey S Akimov, Mali Jiang, Amanda J Kedaigle, Nicolas Arbez, Leonard O Marque, Chelsy R Eddings, Paul T Ranum, Emma Whelan, Anthony Tang, Ronald Wang, Lauren R DeVine, Conover C Talbot, Robert N Cole, Tamara Ratovitski, Beverly L Davidson, Ernest Fraenkel, Christopher A Ross

Affiliations

  1. Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  2. Department of Biological Engineering, Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
  3. The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
  4. Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  5. The Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD 21205, USA.
  6. The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
  7. Department of Neurology, Neuroscience and Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

PMID: 34296279 PMCID: PMC8643509 DOI: 10.1093/hmg/ddab200

Abstract

We have previously established induced pluripotent stem cell (iPSC) models of Huntington's disease (HD), demonstrating CAG-repeat-expansion-dependent cell biological changes and toxicity. However, the current differentiation protocols are cumbersome and time consuming, making preparation of large quantities of cells for biochemical or screening assays difficult. Here, we report the generation of immortalized striatal precursor neurons (ISPNs) with normal (33) and expanded (180) CAG repeats from HD iPSCs, differentiated to a phenotype resembling medium spiny neurons (MSN), as a proof of principle for a more tractable patient-derived cell model. For immortalization, we used co-expression of the enzymatic component of telomerase hTERT and conditional expression of c-Myc. ISPNs can be propagated as stable adherent cell lines, and rapidly differentiated into highly homogeneous MSN-like cultures within 2 weeks, as demonstrated by immunocytochemical criteria. Differentiated ISPNs recapitulate major HD-related phenotypes of the parental iPSC model, including brain-derived neurotrophic factor (BDNF)-withdrawal-induced cell death that can be rescued by small molecules previously validated in the parental iPSC model. Proteome and RNA-seq analyses demonstrate separation of HD versus control samples by principal component analysis. We identified several networks, pathways, and upstream regulators, also found altered in HD iPSCs, other HD models, and HD patient samples. HD ISPN lines may be useful for studying HD-related cellular pathogenesis, and for use as a platform for HD target identification and screening experimental therapeutics. The described approach for generation of ISPNs from differentiated patient-derived iPSCs could be applied to a larger allelic series of HD cell lines, and to comparable modeling of other genetic disorders.

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].

References

  1. Nat Med. 2006 Nov;12(11):1259-68 - PubMed
  2. Open Biol. 2018 Dec 5;8(12): - PubMed
  3. Reprod Biomed Online. 2005 Jan;10(1):105-10 - PubMed
  4. BMB Rep. 2014 Dec;47(12):660-5 - PubMed
  5. J Proteome Res. 2016 Sep 2;15(9):3266-83 - PubMed
  6. Development. 2018 Jan 29;145(2): - PubMed
  7. Ann Neurol. 1997 Oct;42(4):604-12 - PubMed
  8. Am J Physiol Cell Physiol. 2016 Apr 1;310(7):C520-41 - PubMed
  9. Cell. 1992 Jan 10;68(1):33-51 - PubMed
  10. Neurodegener Dis. 2016;16(3-4):245-59 - PubMed
  11. Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2366-70 - PubMed
  12. Cell Stem Cell. 2012 Aug 3;11(2):264-78 - PubMed
  13. Hum Mol Genet. 2014 Sep 15;23(R1):R17-26 - PubMed
  14. Acta Neuropathol. 2008 Jan;115(1):55-69 - PubMed
  15. J Neurosci Methods. 1998 Dec 1;85(2):141-52 - PubMed
  16. In Vitro Cell Dev Biol Anim. 1994 Sep;30A(9):596-603 - PubMed
  17. Cell. 2006 Aug 25;126(4):663-76 - PubMed
  18. J Neuropathol Exp Neurol. 1974 Apr;33(2):308-32 - PubMed
  19. Neurobiol Dis. 2015 Apr;76:46-56 - PubMed
  20. J Proteome Res. 2017 Aug 4;16(8):2692-2708 - PubMed
  21. Exp Neurol. 2006 May;199(1):143-55 - PubMed
  22. J Huntingtons Dis. 2019;8(2):129-143 - PubMed
  23. Science. 1998 Jan 16;279(5349):349-52 - PubMed
  24. J Neurosci. 2011 Mar 2;31(9):3295-308 - PubMed
  25. Nat Biotechnol. 2004 Mar;22(3):297-305 - PubMed
  26. Hum Mol Genet. 2015 Jun 1;24(11):3257-71 - PubMed
  27. Nat Neurosci. 2017 May;20(5):648-660 - PubMed
  28. Prog Brain Res. 2014;211:235-54 - PubMed
  29. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6763-8 - PubMed
  30. Hum Mol Genet. 2009 Feb 15;18(4):753-66 - PubMed
  31. J Neurosci Res. 1998 Jul 15;53(2):223-34 - PubMed
  32. Life Sci. 1993;53(18):PL285-90 - PubMed
  33. Hum Mol Genet. 2013 Jun 15;22(12):2462-70 - PubMed
  34. Stem Cell Reports. 2017 Mar 14;8(3):619-633 - PubMed
  35. Mol Cell Biol. 2004 Oct;24(19):8541-55 - PubMed
  36. Exp Cell Res. 1999 Nov 1;252(2):383-91 - PubMed
  37. Stem Cell Res. 2013 May;10(3):417-427 - PubMed
  38. Neurochem Int. 1986;9(3):431-5 - PubMed
  39. J Biol Chem. 1999 Apr 16;274(16):10737-42 - PubMed
  40. Sci Transl Med. 2017 Dec 6;9(419): - PubMed
  41. Hum Mol Genet. 2000 Nov 22;9(19):2799-809 - PubMed
  42. Neurobiol Dis. 2019 Sep;129:118-129 - PubMed
  43. Reprod Biomed Online. 2009 Jul;19(1):106-13 - PubMed
  44. Nat Biotechnol. 2002 Jun;20(6):592-6 - PubMed
  45. J Biol Chem. 2014 Oct 3;289(40):27571-84 - PubMed
  46. Cell Stem Cell. 2012 Aug 3;11(2):253-63 - PubMed
  47. Stem Cells. 2005 Oct;23(9):1423-33 - PubMed
  48. Sci Transl Med. 2014 Dec 24;6(268):268ra178 - PubMed
  49. Cell Tissue Res. 1998 Feb;291(2):175-89 - PubMed
  50. Lancet Neurol. 2011 Jan;10(1):83-98 - PubMed
  51. J Cell Mol Med. 2012 Nov;16(11):2592-610 - PubMed
  52. Hum Mol Genet. 2006 Dec 15;15(24):3578-91 - PubMed
  53. BMC Med Genomics. 2014 Oct 30;7:60 - PubMed
  54. Stem Cells Dev. 2011 Nov;20(11):1873-87 - PubMed
  55. Cell. 2007 Nov 30;131(5):861-72 - PubMed
  56. Cell. 1993 Mar 26;72(6):971-83 - PubMed
  57. Nat Methods. 2009 May;6(5):359-62 - PubMed
  58. Arch Toxicol. 2017 Jan;91(1):1-33 - PubMed
  59. CNS Neurosci Ther. 2018 Apr;24(4):292-300 - PubMed
  60. J Clin Invest. 2011 May;121(5):1846-57 - PubMed
  61. Neurobiol Dis. 2010 Jul;39(1):28-39 - PubMed
  62. Pharmacol Res. 2005 Aug;52(2):133-9 - PubMed
  63. J Biol Chem. 2017 Nov 24;292(47):19238-19249 - PubMed
  64. J Huntingtons Dis. 2016 Jun 28;5(2):99-131 - PubMed
  65. Cell Stem Cell. 2012 Apr 6;10(4):455-64 - PubMed
  66. Nat Rev Neurol. 2014 Apr;10(4):204-16 - PubMed
  67. Stem Cells. 2008 Sep;26(9):2444-54 - PubMed
  68. Trends Immunol. 2015 Feb;36(2):63-70 - PubMed
  69. Sci Rep. 2017 May 2;7(1):1307 - PubMed
  70. Prog Neurobiol. 2007 Apr;81(5-6):294-330 - PubMed
  71. Hum Mol Genet. 2017 Aug 15;26(16):3144-3160 - PubMed
  72. Annu Rev Biochem. 2004;73:177-208 - PubMed
  73. Stem Cells Dev. 2011 Mar;20(3):495-502 - PubMed
  74. Mol Biol Cell. 2018 Nov 15;29(23):2809-2820 - PubMed
  75. Stem Cells Dev. 2009 Mar;18(2):307-19 - PubMed
  76. Brain Res. 1991 Jun 21;552(1):67-76 - PubMed
  77. Nat Med. 2016 Jan;22(1):37-45 - PubMed

Publication Types

Grant support