Display options
Share it on

NPJ Parkinsons Dis. 2022 Jan 13;8(1):10. doi: 10.1038/s41531-021-00264-w.

Similar neuronal imprint and no cross-seeded fibrils in α-synuclein aggregates from MSA and Parkinson's disease.

NPJ Parkinson's disease

Florent Laferrière, Stéphane Claverol, Erwan Bezard, Francesca De Giorgi, François Ichas

Affiliations

  1. CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France. [email protected].
  2. Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France. [email protected].
  3. Plateforme Proteome, Univ. Bordeaux, Bordeaux, France.
  4. CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
  5. Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
  6. INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U-1084, Université de Poitiers, Poitiers, France.
  7. CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France. [email protected].
  8. Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France. [email protected].
  9. INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U-1084, Université de Poitiers, Poitiers, France. [email protected].

PMID: 35027576 DOI: 10.1038/s41531-021-00264-w

Abstract

Aggregated alpha-synuclein (α-syn) is a principal constituent of Lewy bodies (LBs) and glial cytoplasmic inclusions (GCIs) observed respectively inside neurons in Parkinson's disease (PD) and oligodendrocytes in multiple system atrophy (MSA). Yet, the cellular origin, the pathophysiological role, and the mechanism of formation of these inclusions bodies (IBs) remain to be elucidated. It has recently been proposed that α-syn IBs eventually cause the demise of the host cell by virtue of the cumulative sequestration of partner proteins and organelles. In particular, the hypothesis of a local cross-seeding of other fibrillization-prone proteins like tau or TDP-43 has also been put forward. We submitted sarkosyl-insoluble extracts of post-mortem brain tissue from PD, MSA and control subjects to a comparative proteomic analysis to address these points. Our studies indicate that: (i) α-syn is by far the most enriched protein in PD and MSA extracts compared to controls; (ii) PD and MSA extracts share a striking overlap of their sarkosyl-insoluble proteomes, consisting of a vast majority of mitochondrial and neuronal synaptic proteins, and (iii) other fibrillization-prone protein candidates possibly cross-seeded by α-syn are neither found in PD nor MSA extracts. Thus, our results (i) support the idea that pre-assembled building blocks originating in neurons serve to the formation of GCIs in MSA, (ii) show no sign of amyloid cross-seeding in either synucleinopathy, and (iii) point to the sequestration of mitochondria and of neuronal synaptic components in both LBs and GCIs.

© 2022. The Author(s).

References

  1. Papp, M. I. & Lantos, P. L. Accumulation of tubular structures in oligodendroglial and neuronal cells as the basic alteration in multiple system atrophy. J. Neurol. Sci. 107, 172–182 (1992). - PubMed
  2. Spillantini, M. G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840 (1997). - PubMed
  3. Wakabayashi, K., Tanji, K., Mori, F. & Takahashi, H. The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27, 494–506 (2007). - PubMed
  4. Shahmoradian, S. H. et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22, 1099–1109 (2019). - PubMed
  5. Wakabayashi, K. & Takahashi, H. Cellular pathology in multiple system atrophy. Neuropathology 26, 338–345 (2006). - PubMed
  6. McCormack, A. et al. Purification of alpha-synuclein containing inclusions from human post mortem brain tissue. J. Neurosci. Methods 266, 141–150 (2016). - PubMed
  7. Tompkins, M. M. & Hill, W. D. Contribution of somal Lewy bodies to neuronal death. Brain Res. 775, 24–29 (1997). - PubMed
  8. Gertz, H. J., Siegers, A. & Kuchinke, J. Stability of cell size and nucleolar size in Lewy body containing neurons of substantia nigra in Parkinson’s disease. Brain Res. 637, 339–341 (1994). - PubMed
  9. Parkkinen, L., Pirttila, T. & Alafuzoff, I. Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol. 115, 399–407 (2008). - PubMed
  10. Parkkinen, L. et al. Disentangling the relationship between Lewy bodies and nigral neuronal loss in Parkinson’s disease. J. Parkinsons Dis. 1, 277–286 (2011). - PubMed
  11. Parkkinen, L., Kauppinen, T., Pirttila, T., Autere, J. M. & Alafuzoff, I. Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann. Neurol. 57, 82–91 (2005). - PubMed
  12. Mahul-Mellier, A. L. et al. The process of Lewy body formation, rather than simply alpha-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl Acad. Sci. USA 117, 4971–4982 (2020). - PubMed
  13. Nakashima-Yasuda, H. et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 114, 221–229 (2007). - PubMed
  14. Guo, J. L. et al. Distinct alpha-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013). - PubMed
  15. Giasson, B. I. et al. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300, 636–640 (2003). - PubMed
  16. Masuda-Suzukake, M. et al. Prion-like spreading of pathological alpha-synuclein in brain. Brain 136, 1128–1138 (2013). - PubMed
  17. De Giorgi, F. et al. Novel self-replicating alpha-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons. Sci. Adv. https://doi.org/10.1126/sciadv.abc4364 (2020). - PubMed
  18. Culvenor, J. G., Rietze, R. L., Bartlett, P. F., Masters, C. L. & Li, Q. X. Oligodendrocytes from neural stem cells express alpha-synuclein: increased numbers from presenilin 1 deficient mice. Neuroreport 13, 1305–1308 (2002). - PubMed
  19. Richter-Landsberg, C., Gorath, M., Trojanowski, J. Q. & Lee, V. M. alpha-synuclein is developmentally expressed in cultured rat brain oligodendrocytes. J. Neurosci. Res. 62, 9–14 (2000). - PubMed
  20. Gai, W. P., Power, J. H., Blumbergs, P. C., Culvenor, J. G. & Jensen, P. H. Alpha-synuclein immunoisolation of glial inclusions from multiple system atrophy brain tissue reveals multiprotein components. J. Neurochem. 73, 2093–2100 (1999). - PubMed
  21. Iwatsubo, T. et al. Purification and characterization of Lewy bodies from the brains of patients with diffuse Lewy body disease. Am. J. Pathol. 148, 1517–1529 (1996). - PubMed
  22. Jensen, P. H. et al. Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments. J. Biol. Chem. 275, 21500–21507 (2000). - PubMed
  23. Kaji, S., Maki, T., Ishimoto, T., Yamakado, H. & Takahashi, R. Insights into the pathogenesis of multiple system atrophy: focus on glial cytoplasmic inclusions. Transl. Neurodegener. 9, 7 (2020). - PubMed
  24. Leverenz, J. B. et al. Proteomic identification of novel proteins in cortical Lewy bodies. Brain Pathol. 17, 139–145 (2007). - PubMed
  25. McCormack, A. et al. Abundance of synaptic vesicle-related proteins in alpha-synuclein-containing protein inclusions suggests a targeted formation mechanism. Neurotox. Res. 35, 883–897 (2019). - PubMed
  26. Sian, J. et al. A novel technique for the isolation of Lewy bodies in brain. Acta Neuropathol. 96, 111–115 (1998). - PubMed
  27. Xia, Q. et al. Proteomic identification of novel proteins associated with Lewy bodies. Front. Biosci. 13, 3850–3856 (2008). - PubMed
  28. Laferriere, F. et al. Overexpression of alpha-synuclein by oligodendrocytes in transgenic mice does not recapitulate the fibrillar aggregation seen in multiple system atrophy. Cells https://doi.org/10.3390/cells9112371 (2020). - PubMed
  29. Laferriere, F. et al. TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nat. Neurosci. 22, 65–77 (2019). - PubMed
  30. Abudu, Y. P. et al. NIPSNAP1 and NIPSNAP2 act as “eat me” signals to allow sustained recruitment of autophagy receptors during mitophagy. Autophagy 15, 1845–1847 (2019). - PubMed
  31. Son, J. H. et al. Neurotoxicity and behavioral deficits associated with Septin 5 accumulation in dopaminergic neurons. J. Neurochem. 94, 1040–1053 (2005). - PubMed
  32. Lee, K. W. et al. Enhanced phosphatase activity attenuates alpha-synucleinopathy in a mouse model. J. Neurosci. 31, 6963–6971 (2011). - PubMed
  33. Park, H. J. et al. Dysregulation of protein phosphatase 2A in Parkinson disease and dementia with Lewy bodies. Ann. Clin. Transl. Neurol. 3, 769–780 (2016). - PubMed
  34. Uemura, N. et al. Slow progressive accumulation of oligodendroglial alpha-synuclein (alpha-Syn) pathology in synthetic alpha-Syn fibril-induced mouse models of synucleinopathy. J. Neuropathol. Exp. Neurol. 78, 877–890 (2019). - PubMed
  35. Sokratian, A. et al. Heterogeneity in alpha-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathol. 141, 547–564 (2021). - PubMed
  36. Shahnawaz, M. et al. Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578, 273–277 (2020). - PubMed
  37. Peng, C. et al. Cellular milieu imparts distinct pathological alpha-synuclein strains in alpha-synucleinopathies. Nature 557, 558–563 (2018). - PubMed
  38. Lau, A. et al. alpha-Synuclein strains target distinct brain regions and cell types. Nat. Neurosci. 23, 21–31 (2020). - PubMed
  39. Miller, D. W. et al. Absence of alpha-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J. Neural Transm. 112, 1613–1624 (2005). - PubMed
  40. Woerman, A. L. et al. Kinetics of alpha-synuclein prions preceding neuropathological inclusions in multiple system atrophy. PLoS Pathog. 16, e1008222 (2020). - PubMed
  41. Kall, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925 (2007). - PubMed

Publication Types