Display options
Share it on

Sci Rep. 2022 Jan 13;12(1):707. doi: 10.1038/s41598-021-04597-7.

Multisensor hyperspectral imaging approach for the microchemical analysis of ultramarine blue pigments.

Scientific reports

M González-Cabrera, K Wieland, E Eitenberger, A Bleier, L Brunnbauer, A Limbeck, H Hutter, C Haisch, B Lendl, A Domínguez-Vidal, M J Ayora-Cañada

Affiliations

  1. Department of Physical and Analytical Chemistry, Universidad de Jaén, Campus Las Lagunillas, s/n, 23071, Jaén, Spain.
  2. Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria.
  3. Chair of Analytical Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377, Munich, Germany.
  4. Department of Physical and Analytical Chemistry, Universidad de Jaén, Campus Las Lagunillas, s/n, 23071, Jaén, Spain. [email protected].

PMID: 35027601 DOI: 10.1038/s41598-021-04597-7

Abstract

This work presents a multisensor hyperspectral approach for the characterization of ultramarine blue, a valuable historical pigment, at the microscopic scale combining the information of four analytical techniques at the elemental and molecular levels. The hyperspectral images collected were combined in a single hypercube, where the pixels of the various spectral components are aligned on top of each other. Selected spectral descriptors have been defined to reduce data dimensionality before applying unsupervised chemometric data analysis approaches. Lazurite, responsible for the blue color of the pigment, was detected as the major mineral phase present in synthetic and good quality pigments. Impurities like pyrite were detected in lower quality samples, although the clear identification of other mineral phases with silicate basis was more difficult. There is no correlation between the spatial distribution of the bands arising in the Raman spectra of natural samples in the region 1200-1850 cm

© 2022. The Author(s).

References

  1. Amigo, J. M., Babamoradi, H. & Elcoroaristizabal, S. Hyperspectral image analysis. A tutorial. Anal. Chim. Acta 896, 34–51 (2015). - PubMed
  2. Salzer, R. & Siesler, H. W. Infrared and Raman Spectroscopic Imaging. Infrared and Raman Spectroscopic Imaging, 2 ed (Wiley, 2014). https://doi.org/10.1002/9783527678136 . - PubMed
  3. Ofner, J. et al. Image-based chemical structure determination. Sci. Rep. 7, 1–11 (2017). - PubMed
  4. Ofner, J. et al. A novel substrate for multisensor hyperspectral imaging. J. Microsc. 265, 341–348 (2017). - PubMed
  5. Ofner, J. et al. Chemometric analysis of multisensor hyperspectral images of precipitated atmospheric particulate matter. Anal. Chem. 87, 9413–9420 (2015). - PubMed
  6. Wu, J. S. et al. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope. Ultramicroscopy 128, 24–31 (2013). - PubMed
  7. Lanni, E. J. et al. Correlated imaging with C60-SIMS and confocal raman microscopy: Visualization of cell-scale molecular distributions in bacterial biofilms. Anal. Chem. 86, 10885–10891 (2014). - PubMed
  8. Van De Plas, R., Yang, J., Spraggins, J. & Caprioli, R. M. Image fusion of mass spectrometry and microscopy: A multimodality paradigm for molecular tissue mapping. Nat. Methods 12, 366–372 (2015). - PubMed
  9. Balbekova, A. et al. Fourier transform infrared (FT-IR) and laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging of cerebral ischemia: Combined analysis of rat brain thin cuts toward improved tissue classification. Appl. Spectrosc. 72, 241–250 (2018). - PubMed
  10. Balbekova, A. et al. FTIR-spectroscopic and LA-ICP-MS imaging for combined hyperspectral image analysis of tumor models. Anal. Methods 9, 5464–5471 (2017). - PubMed
  11. Bonta, M. et al. Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS. J. Anal. At. Spectrom. 31, 252–258 (2016). - PubMed
  12. de Juan, A. Hyperspectral image analysis. When space meets chemistry. J. Chemom. 32, e2985 (2018). - PubMed
  13. Lohninger, H. & Ofner, J. Multisensor hyperspectral imaging as a versatile tool for image-based chemical structure determination. Spectrosc. Eur. 26, 6–10 (2014). - PubMed
  14. Sobol, O. et al. First use of data fusion and multivariate analysis of ToF-SIMS and SEM image data for studying deuterium-assisted degradation processes in duplex steels. In Surface and Interface Analysis Vol. 48 474–478 (Wiley, 2016). - PubMed
  15. Holzlechner, M., Bonta, M., Lohninger, H., Limbeck, A. & Marchetti-Deschmann, M. Multisensor imaging—from sample preparation to integrated multimodal interpretation of LA-ICPMS and MALDI MS imaging data. Anal. Chem. 90, 8831–8837 (2018). - PubMed
  16. Clarke, M. & Krekel, C. The art of all colours. Medieval recipe books for painters and illuminators. Stud. Conserv. 46, 304 (2001). - PubMed
  17. Frison, G. & Brun, G. Lapis lazuli, lazurite, ultramarine ‘blue’, and the colour term ‘azure’ up to the 13th century. J. Int. Colour Assoc. 16, 41–55 (2016). - PubMed
  18. Hassan, I., Peterson, R. C. & Grundy, H. D. The structure of lazurite, ideally Na - PubMed
  19. Ballirano, P. & Maras, A. Mineralogical characterization of the blue pigment of Michelangelo’s fresco “The Last Judgment”. Am. Mineral. 91, 997–1005 (2006). - PubMed
  20. Mandarino, J. A. & Back, M. E. Fleischer’s Glossary of Mineral Species. The Canadian Mineralogist (Mineralogical Association of Canada, 2004). https://doi.org/10.2113/gscanmin.43.4.1436 . - PubMed
  21. Hassan, I. & Grundy, H. D. The crystal structures of sodalite-group minerals. Acta Crystallogr. Sect. B Struct. Sci. 40, 6–13 (1984). - PubMed
  22. Finch, A. A., Friis, H. & Maghrabi, M. Defects in sodalite-group minerals determined from X-ray-induced luminescence. Phys. Chem. Miner. 43, 481–491 (2016). - PubMed
  23. Arieli, D., Vaughan, D. E. W. & Goldfarb, D. New synthesis and insight into the structure of blue ultramarine pigments. J. Am. Chem. Soc. 126, 5776–5788 (2004). - PubMed
  24. Booth, D. G., Dann, S. E. & Weller, M. T. The effect of the cation composition on the synthesis and properties of ultramarine blue. Dye. Pigment. 58, 73–82 (2003). - PubMed
  25. Gobeltz-Hautecoeur, N., Demortier, A., Lede, B., Lelieur, J. P. & Duhayon, C. Occupancy of the sodalite cages in the blue ultramarine pigments. Inorg. Chem. 41, 2848–2854 (2002). - PubMed
  26. Kowalak, S., Jankowska, A., Zeidler, S. & Wiȩckowski, A. B. Sulfur radicals embedded in various cages of ultramarine analogs prepared from zeolites. J. Solid State Chem. 180, 1119–1124 (2007). - PubMed
  27. Reinen, D. & Lindner, G.-G. The nature of the chalcogen colour centres in ultramarine-type solids. Chem. Soc. Rev. 28, 75–84 (1999). - PubMed
  28. Ali, E. M. A. & Edwards, H. G. M. Analytical Raman spectroscopy in a forensic art context: The non-destructive discrimination of genuine and fake lapis lazuli. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 415–419 (2014). - PubMed
  29. Klyachkovskaya, E. V. et al. Enhancement of Raman scattering of light by ultramarine microcrystals in presence of silver nanoparticles. J. Raman Spectrosc. 43, 741–744 (2012). - PubMed
  30. Mertens, J. The history of artificial ultramarine (1787–1844): Science, industry and secrecy. Ambix 51, 219–244 (2004). - PubMed
  31. Osticioli, I. et al. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 73, 525–531 (2009). - PubMed
  32. Aceto, M., Agostino, A., Fenoglio, G. & Picollo, M. Non-invasive differentiation between natural and synthetic ultramarine blue pigments by means of 250–900 nm FORS analysis. Anal. Methods 5, 4184–4189 (2013). - PubMed
  33. De Torres, A. R., Ruiz-Moreno, S., López-Gil, A., Ferrer, P. & Chillón, M. C. Differentiation with Raman spectroscopy among several natural ultramarine blues and the synthetic ultramarine blue used by the Catalonian modernist painter Ramon Casas i Carbó. J. Raman Spectrosc. 45, 1279–1284 (2014). - PubMed
  34. Silva, C. E., Silva, L. P., Edwards, H. G. M. & de Oliveira, L. F. C. Diffuse reflection FTIR spectral database of dyes and pigments. Anal. Bioanal. Chem. 386, 2183–2191 (2006). - PubMed
  35. Zeng, Q. G., Zhang, G. X., Leung, C. W. & Zuo, J. Studies of wall painting fragments from Kaiping Diaolou by SEM/EDX, micro Raman and FT-IR spectroscopy. Microchem. J. 96, 330–336 (2010). - PubMed
  36. González-Cabrera, M., Arjonilla, P., Domínguez-Vidal, A. & Ayora-Cañada, M. J. Natural or synthetic? Simultaneous Raman/luminescence hyperspectral microimaging for the fast distinction of ultramarine pigments. Dye Pigment 178, 25 (2020). - PubMed
  37. Schmidt, C. M., Walton, M. S. & Trentelman, K. Characterization of lapis lazuli pigments using a multitechnique analytical approach: Implications for identification and geological provenancing. Anal. Chem. 81, 8513–8518 (2009). - PubMed
  38. Lenz, C. et al. Laser-induced REE3+ photoluminescence of selected accessory minerals—an ‘advantageous artefact’ in Raman spectroscopy. Chem. Geol. 415, 1–16 (2015). - PubMed
  39. Cennino, C. Il libro dell’arte (Le Monnier, 1859). - PubMed
  40. Favaro, M., Guastoni, A., Marini, F., Bianchin, S. & Gambirasi, A. Characterization of lapis lazuli and corresponding purified pigments for a provenance study of ultramarine pigments used in works of art. Anal. Bioanal. Chem. 402, 2195–2208 (2012). - PubMed
  41. Ganio, M., Pouyet, E. S., Webb, S. M., Schmidt Patterson, C. M. & Walton, M. S. From lapis lazuli to ultramarine blue: Investigating Cennino Cennini’s recipe using sulfur K-edge XANES. Pure Appl. Chem. 90, 463–475 (2018). - PubMed
  42. Hassan, I. & Grundy, H. D. The structure of Nosean, Ideally Na - PubMed
  43. Banerjee, A. & Häger, T. On some crystals of “Lapis Lazuli”. Z. Nat. Sect. A J. Phys. Sci. 47, 1094–1095 (1992). - PubMed
  44. Marfunin, A. S. Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer, 1979). - PubMed
  45. Chen, H. & Stimets, R. W. Fluorescence of trivalent neodymium in various materials excited by a 785 nm laser. Am. Mineral. 99, 332–342 (2014). - PubMed
  46. Rodriguez-Garcia, V. et al. Fermi resonance in CO2: A combined electronic coupled-cluster and vibrational configuration-interaction prediction. J. Chem. Phys. 126, 124303 (2007). - PubMed
  47. Sode, O., Keçeli, M., Yagi, K. & Hirata, S. Fermi resonance in solid CO - PubMed
  48. Dodson, L. G., Thompson, M. C. & Weber, J. M. Characterization of intermediate oxidation states in CO - PubMed
  49. Chukanov, N. V. et al. Extra-framework content in sodalite-group minerals: Complexity and new aspects of its study using infrared and Raman spectroscopy. Minerals 10, 363 (2020). - PubMed
  50. Miliani, C., Daveri, A., Brunetti, B. G. & Sgamellotti, A. CO2 entrapment in natural ultramarine blue. Chem. Phys. Lett. 466, 148–151 (2008). - PubMed
  51. Smith, G. D. & Klinshaw, R. J. The presence of trapped carbon dioxide in lapis lazuli and its potential use in geo-sourcing natural ultramarine pigment. J. Cult. Herit. 10, 415–421 (2009). - PubMed
  52. Bellatreccia, F., Della Ventura, G., Piccinini, M., Cavallo, A. & Brilli, M. H2O and CO2 in minerals of the haüyne-sodalite group: An FTIR spectroscopy study. Mineral. Mag. 73, 399–413 (2009). - PubMed
  53. Epina Softwareentwicklungs- und Vertriebs-GmbH. Epina Software Labs. - PubMed
  54. Eilers, P. & Boelens, H. Baseline Correction with Asymmetric Least Squares Smoothing. Technical report-Leiden University Medical Center (2005). - PubMed

Publication Types

Grant support