Display options
Share it on

J Vis. 2021 Dec 01;21(13):9. doi: 10.1167/jov.21.13.9.

Eye movements elevate crowding in idiopathic infantile nystagmus syndrome.

Journal of vision

Vijay K Tailor, Maria Theodorou, Annegret H Dahlmann-Noor, Tessa M Dekker, John A Greenwood

Affiliations

  1. Experimental Psychology, University College London, London, UK.
  2. NIHR Biomedical Research Centre @ Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.
  3. Moorfields Eye Hospital NHS Foundation Trust, London, UK.
  4. [email protected] https://eccentricvision.com.
  5. [email protected].
  6. [email protected].
  7. [email protected] https://www.ucl.ac.uk/~ucjttb1/.
  8. [email protected] https://eccentricvision.com.

PMID: 34935877 PMCID: PMC8709927 DOI: 10.1167/jov.21.13.9

Abstract

Idiopathic infantile nystagmus syndrome is a disorder characterised by involuntary eye movements, which leads to decreased acuity and visual function. One such function is visual crowding - a process whereby objects that are easily recognised in isolation become impaired by nearby flankers. Crowding typically occurs in the peripheral visual field, although elevations in foveal vision have been reported in congenital nystagmus, similar to those found with amblyopia. Here, we examine whether elevated foveal crowding with nystagmus is driven by similar mechanisms to those of amblyopia - long-term neural changes associated with a sensory deficit - or by the momentary displacement of the stimulus through nystagmus eye movements. A Landolt-C orientation identification task was used to measure threshold gap sizes with and without either horizontally or vertically placed Landolt-C flankers. We assume that a sensory deficit should give equivalent crowding in these two dimensions, whereas an origin in eye movements should give stronger crowding with horizontal flankers given the predominantly horizontal eye movements of nystagmus. We observe elevations in nystagmic crowding that are above crowding in typical vision but below that of amblyopia. Consistent with an origin in eye movements, elevations were stronger with horizontal than vertical flankers in nystagmus, but not in typical or amblyopic vision. We further demonstrate the same horizontal elongation in typical vision with stimulus movement that simulates nystagmus. Consequently, we propose that the origin of nystagmic crowding lies in the eye movements, either through image smear of the target and flanker elements or through relocation of the stimulus into the peripheral retina.

References

  1. Pediatr Neonatol. 2014 Oct;55(5):341-51 - PubMed
  2. J Vis. 2002;2(2):167-77 - PubMed
  3. J Pediatr Ophthalmol Strabismus. 1989 Mar-Apr;26(2):97-104 - PubMed
  4. Curr Opin Neurobiol. 1999 Aug;9(4):480-6 - PubMed
  5. Vision Res. 1999 Aug;39(17):2963-73 - PubMed
  6. Vision Res. 2012 Jul 1;64:1-6 - PubMed
  7. Ann N Y Acad Sci. 2002 Apr;956:601-3 - PubMed
  8. Vision Res. 1989;29(2):195-205 - PubMed
  9. J Vis. 2003;3(5):380-405 - PubMed
  10. Nature. 1970 Apr 11;226(5241):177-8 - PubMed
  11. Curr Biol. 2015 Dec 21;25(24):3213-9 - PubMed
  12. Ann N Y Acad Sci. 2002 Apr;956:361-79 - PubMed
  13. Vision Res. 1979;19(12):1409-11 - PubMed
  14. Vision Res. 2011 May 25;51(10):1117-23 - PubMed
  15. Am J Optom Physiol Opt. 1975 Sep;52(9):573-81 - PubMed
  16. Optom Vis Sci. 2000 Nov;77(11):573-81 - PubMed
  17. Optom Vis Sci. 2011 Feb;88(2):200-7 - PubMed
  18. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3573-E3582 - PubMed
  19. Science. 1963 Nov 15;142(3594):979-80 - PubMed
  20. Invest Ophthalmol Vis Sci. 2009 Nov;50(11):5201-6 - PubMed
  21. J Vis. 2011 Jan 10;11(1):10 - PubMed
  22. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13130-5 - PubMed
  23. Vision Res. 2007 May;47(11):1550-60 - PubMed
  24. Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5094-101 - PubMed
  25. Arch Ophthalmol. 1991 Feb;109(2):216-20 - PubMed
  26. Vision Res. 1995 Nov;35(21):3071-82 - PubMed
  27. Invest Ophthalmol Vis Sci. 2012 Nov 15;53(12):7655-65 - PubMed
  28. Vision Res. 2002 May;42(11):1379-94 - PubMed
  29. Percept Psychophys. 1983 Feb;33(2):113-20 - PubMed
  30. Vision Res. 1992 Jul;32(7):1349-57 - PubMed
  31. Vision Res. 2007 Jan;47(1):126-35 - PubMed
  32. Doc Ophthalmol. 2000 Jul;101(1):59-72 - PubMed
  33. Curr Biol. 2012 Jul 10;22(13):1199-206 - PubMed
  34. J Vis. 2004 Dec 30;4(12):1136-69 - PubMed
  35. J Vis. 2015 Jan 08;15(1):15.1.4 - PubMed
  36. Sci Rep. 2018 Jun 15;8(1):9177 - PubMed
  37. Vision Res. 2002 Sep;42(20):2395-407 - PubMed
  38. Vision Res. 2021 Feb;179:9-18 - PubMed
  39. J Vis. 2014 May 05;14(5):3 - PubMed
  40. J Neuroophthalmol. 2002 Mar;22(1):22-32 - PubMed
  41. Vision Res. 2000;40(9):1059-67 - PubMed
  42. Nat Neurosci. 2012 Jan 08;15(3):463-9, S1-2 - PubMed
  43. Vision Res. 1985;25(8):1089-96 - PubMed
  44. Doc Ophthalmol. 1992;79(1):1-23 - PubMed
  45. J Physiol. 1966 Nov;187(2):437-45 - PubMed
  46. Spat Vis. 1997;10(4):437-42 - PubMed
  47. Ann N Y Acad Sci. 1981;374:312-29 - PubMed
  48. Psychol Rev. 1976 Jan;83(1):1-36 - PubMed
  49. Nat Neurosci. 2001 Jul;4(7):739-44 - PubMed
  50. Semin Ophthalmol. 2006 Apr-Jun;21(2):97-101 - PubMed
  51. Invest Ophthalmol Vis Sci. 2014 Apr 25;55(4):2682-6 - PubMed
  52. Br J Ophthalmol. 2002 Oct;86(10):1152-60 - PubMed
  53. J Neurosci. 2015 Nov 4;35(44):14740-55 - PubMed
  54. Vision Res. 2008 Feb;48(5):635-54 - PubMed
  55. Vision Res. 2003 Dec;43(27):2895-904 - PubMed
  56. Doc Ophthalmol. 2002 May;104(3):249-76 - PubMed
  57. Vision Res. 2015 Sep;114:87-99 - PubMed
  58. Invest Ophthalmol Vis Sci. 1996 Jan;37(1):188-95 - PubMed
  59. Spat Vis. 1997;10(4):433-6 - PubMed
  60. Behav Res Methods. 2020 Feb;52(1):36-50 - PubMed
  61. Vision Res. 1985;25(7):979-91 - PubMed
  62. Neuroscientist. 2004 Apr;10(2):106-17 - PubMed
  63. Behav Res Methods. 2019 Oct;51(5):2074-2084 - PubMed
  64. Vision Res. 1996 Aug;36(16):2395-410 - PubMed
  65. Vision Res. 1995 Jun;35(12):1785-9 - PubMed
  66. J Opt Soc Am. 1963 Sep;53:1026-32 - PubMed

Publication Types