Display options
Share it on

Sci Rep. 2021 Dec 27;11(1):24446. doi: 10.1038/s41598-021-03702-0.

SATB1, genomic instability and Gleason grading constitute a novel risk score for prostate cancer.

Scientific reports

Christoph Dumke, Timo Gemoll, Martina Oberländer, Sandra Freitag-Wolf, Christoph Thorns, Axel Glaessgen, Rinse Klooster, Silvère M van der Maarel, Jerker Widengren, Christian Doehn, Gert Auer, Jens K Habermann

Affiliations

  1. Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
  2. Interdisciplinary Center for Biobanking-Lübeck (ICB-L), University of Lübeck, Lübeck, Germany.
  3. Institute of Medical Informatics and Statistics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
  4. Institute of Pathology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
  5. Department of Clinical Pathology and Cytology, Unilabs AB, Stockholm, Sweden.
  6. Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
  7. Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden.
  8. Urologikum Lübeck, Lübeck, Germany.
  9. Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
  10. Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany. [email protected].
  11. Interdisciplinary Center for Biobanking-Lübeck (ICB-L), University of Lübeck, Lübeck, Germany. [email protected].
  12. Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. [email protected].

PMID: 34961766 PMCID: PMC8712510 DOI: 10.1038/s41598-021-03702-0

Abstract

Current prostate cancer risk classifications rely on clinicopathological parameters resulting in uncertainties for prognostication. To improve individual risk stratification, we examined the predictive value of selected proteins with respect to tumor heterogeneity and genomic instability. We assessed the degree of genomic instability in 50 radical prostatectomy specimens by DNA-Image-Cytometry and evaluated protein expression in related 199 tissue-microarray (TMA) cores. Immunohistochemical data of SATB1, SPIN1, TPM4, VIME and TBB5 were correlated with the degree of genomic instability, established clinical risk factors and overall survival. Genomic instability was associated with a GS ≥ 7 (p = 0.001) and worse overall survival (p = 0.008). A positive SATB1 expression was associated with a GS ≤ 6 (p = 0.040), genomic stability (p = 0.027), and was a predictor for increased overall survival (p = 0.023). High expression of SPIN1 was also associated with longer overall survival (p = 0.048) and lower preoperative PSA-values (p = 0.047). The combination of SATB1 expression, genomic instability, and GS lead to a novel Prostate Cancer Prediction Score (PCP-Score) which outperforms the current D'Amico et al. stratification for predicting overall survival. Low SATB1 expression, genomic instability and GS ≥ 7 were identified as markers for poor prognosis. Their combination overcomes current clinical risk stratification regimes.

© 2021. The Author(s).

References

  1. Histopathology. 2014 Aug;65(2):155-63 - PubMed
  2. JAMA. 1998 Sep 16;280(11):969-74 - PubMed
  3. Breast. 2011 Aug;20(4):309-13 - PubMed
  4. Oncol Lett. 2017 Apr;13(4):2577-2582 - PubMed
  5. Urology. 2012 Nov;80(5):1075-9 - PubMed
  6. Nat Genet. 2006 Nov;38(11):1278-88 - PubMed
  7. PLoS One. 2015 Feb 06;10(2):e0115537 - PubMed
  8. Biomed Pharmacother. 2016 Apr;79:1-8 - PubMed
  9. Nanoscale. 2019 May 28;11(20):10023-10033 - PubMed
  10. Tumori. 2009 Nov-Dec;95(6):744-52 - PubMed
  11. J Clin Pathol. 2007 Jun;60(6):649-55 - PubMed
  12. Dis Colon Rectum. 2007 Nov;50(11):1800-10 - PubMed
  13. Urology. 2007 Nov;70(5):931-5 - PubMed
  14. PLoS One. 2013;8(1):e53527 - PubMed
  15. Prostate. 1997 Mar 1;30(4):263-8 - PubMed
  16. Br J Cancer. 2017 Jul 25;117(3):367-375 - PubMed
  17. J Exp Clin Cancer Res. 2005 Jun;24(2):273-8 - PubMed
  18. Eksp Klin Farmakol. 2015;78(8):25-8 - PubMed
  19. Hum Pathol. 1989 Jun;20(6):518-27 - PubMed
  20. Anal Quant Cytol. 1980 Sep;2(3):161-5 - PubMed
  21. Asian Pac J Cancer Prev. 2015;16(7):2601-11 - PubMed
  22. Physiol Rev. 2008 Jan;88(1):1-35 - PubMed
  23. Nature. 2008 Mar 13;452(7184):187-93 - PubMed
  24. J Transl Med. 2013 May 04;11:111 - PubMed
  25. J Urol. 2008 Apr;179(4):1354-60; discussion 1360-1 - PubMed
  26. Cold Spring Harb Perspect Med. 2017 Jan 3;7(1): - PubMed
  27. Prostate. 2002 Sep 1;52(4):253-63 - PubMed
  28. Cell Death Dis. 2013 Oct 31;4:e901 - PubMed
  29. Mol Cell. 2006 Apr 21;22(2):231-43 - PubMed
  30. Urol Oncol. 2015 Jul;33(7):329.e13-9 - PubMed
  31. Oncotarget. 2015 Mar 10;6(7):4773-89 - PubMed
  32. Proteomics. 2006 Jun;6(11):3352-68 - PubMed
  33. Nat Commun. 2019 Jul 19;10(1):3221 - PubMed
  34. Pathol Oncol Res. 2014 Jul;20(3):719-26 - PubMed
  35. Ai Zheng. 2004 Feb;23(2):141-5 - PubMed
  36. Cancer. 1994 Nov 15;74(10):2811-8 - PubMed
  37. PLoS One. 2014 Jun 27;9(6):e100413 - PubMed
  38. Nucleic Acids Res. 2011 Jun;39(11):4640-52 - PubMed
  39. Development. 1997 Jan;124(2):493-503 - PubMed
  40. Tumour Biol. 2013 Oct;34(5):2943-9 - PubMed
  41. Am J Surg Pathol. 2002 Mar;26(3):312-9 - PubMed
  42. J Natl Cancer Inst. 2009 Sep 16;101(18):1280-3 - PubMed
  43. Tumour Biol. 2015 Nov;36(11):9073-81 - PubMed
  44. CA Cancer J Clin. 2018 Nov;68(6):394-424 - PubMed
  45. Am J Surg Pathol. 2005 Sep;29(9):1228-42 - PubMed
  46. J Thorac Oncol. 2011 Jul;6(7):1179-89 - PubMed
  47. Asian J Androl. 2016 Jul-Aug;18(4):543-8 - PubMed
  48. Pathologe. 1987 May;8(3):138-40 - PubMed
  49. J Natl Cancer Inst. 2010 Aug 18;102(16):1284-96 - PubMed

Publication Types