Display options
Share it on

JCI Insight. 2021 Sep 08;6(17). doi: 10.1172/jci.insight.150483.

TNFRSF13B genotypes control immune-mediated pathology by regulating the functions of innate B cells.

JCI insight

Mayara Garcia de Mattos Barbosa, Adam R Lefferts, Daniel Huynh, Hui Liu, Yu Zhang, Beverly Fu, Jenna Barnes, Milagros Samaniego, Richard J Bram, Raif S Geha, Ariella Shikanov, Eline T Luning Prak, Evan A Farkash, Jeffrey L Platt, Marilia Cascalho

Affiliations

  1. Department of Surgery.
  2. Department of Pathology, and.
  3. Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA.
  4. Department of Pediatric and Adolescent Medicine and Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA.
  5. Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.
  6. Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
  7. Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
  8. Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  9. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA.

PMID: 34283811 PMCID: PMC8492324 DOI: 10.1172/jci.insight.150483

Abstract

Host genes define the severity of inflammation and immunity but specific loci doing so are unknown. Here we show that TNF receptor superfamily member 13B (TNFRSF13B) variants, which enhance defense against certain pathogens, also control immune-mediated injury of transplants, by regulating innate B cells' functions. Analysis of TNFRSF13B in human kidney transplant recipients revealed that 33% of those with antibody-mediated rejection (AMR) but fewer than 6% of those with stable graft function had TNFRSF13B missense mutations. To explore mechanisms underlying aggressive immune responses, we investigated alloimmunity and rejection in mice. Cardiac allografts in Tnfrsf13b-mutant mice underwent early and severe AMR. The dominance and precocity of AMR in Tnfrsf13b-deficient mice were not caused by increased alloantibodies. Rather, Tnfrsf13b mutations decreased "natural" IgM and compromised complement regulation, leading to complement deposition in allografted hearts and autogenous kidneys. Thus, WT TNFRSF13B and Tnfrsf13b support innate B cell functions that limit complement-associated inflammation; in contrast, common variants of these genes intensify inflammatory responses that help clear microbial infections but allow inadvertent tissue injury to ensue. The wide variation in inflammatory reactions associated with TNFRSF13B diversity suggests polymorphisms could underlie variation in host defense and explosive inflammatory responses that sometimes enhance morbidity associated with immune responses.

Keywords: Genetic variation; Genetics; Immunoglobulins; Inflammation; Mouse models

References

  1. Science. 1997 Oct 3;278(5335):138-41 - PubMed
  2. Harvey Lect. 1956-1958;(Series 52):144-76 - PubMed
  3. Mol Biol Evol. 2017 Nov 1;34(11):2996-3005 - PubMed
  4. BMC Bioinformatics. 2006 May 19;7:261 - PubMed
  5. PLoS One. 2014 Jul 15;9(7):e102501 - PubMed
  6. Transpl Int. 2011 Dec;24(12):1231-8 - PubMed
  7. J Clin Invest. 2020 May 1;130(5):2620-2629 - PubMed
  8. Transplantation. 2015 Jun;99(6):1151-5 - PubMed
  9. Am J Transplant. 2008 Jan;8(1):41-9 - PubMed
  10. Blood. 2011 Nov 24;118(22):5832-9 - PubMed
  11. J Clin Invest. 2010 Jun;120(6):1836-47 - PubMed
  12. Sci Immunol. 2019 Feb 1;4(32): - PubMed
  13. Biostatistics. 2003 Apr;4(2):249-64 - PubMed
  14. J Exp Med. 2005 Jan 3;201(1):35-9 - PubMed
  15. Nat Genet. 2005 Aug;37(8):820-8 - PubMed
  16. J Allergy Clin Immunol. 2009 Jun;123(6):1277-86.e5 - PubMed
  17. J Immunol. 2007 Aug 15;179(4):2282-8 - PubMed
  18. Discov Med. 2010 Aug;10(51):125-33 - PubMed
  19. JCI Insight. 2021 Jul 22;6(14): - PubMed
  20. Nat Genet. 2005 Aug;37(8):829-34 - PubMed
  21. Cell. 2019 Mar 21;177(1):184-199 - PubMed
  22. Nature. 2016 Aug 17;536(7616):285-91 - PubMed
  23. J Immunol. 2012 Feb 15;188(4):1675-85 - PubMed
  24. J Allergy Clin Immunol. 2017 Apr;139(4):1293-1301.e4 - PubMed
  25. AIDS. 2011 Jun 19;25(10):1247-57 - PubMed
  26. Immunity. 2001 May;14(5):573-82 - PubMed
  27. J Clin Invest. 2013 Oct;123(10):4283-93 - PubMed
  28. J Immunol. 2007 Oct 15;179(8):5238-45 - PubMed
  29. J Allergy Clin Immunol. 2005 Feb;115(2):412-7 - PubMed
  30. J Clin Invest. 2014 Nov;124(11):4857-66 - PubMed
  31. Immunol Res. 2000;22(2-3):137-46 - PubMed
  32. Am J Transplant. 2018 Aug;18(8):2100-2101 - PubMed
  33. Clin Transpl. 2012;:247-56 - PubMed
  34. Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894 - PubMed
  35. J Am Soc Nephrol. 2015 May;26(5):1216-27 - PubMed
  36. Front Immunol. 2021 Feb 17;12:634544 - PubMed
  37. Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761 - PubMed
  38. Am J Hum Genet. 2016 Oct 6;99(4):877-885 - PubMed
  39. J Immunol. 1996 Jan 15;156(2):749-57 - PubMed
  40. Front Immunol. 2016 Jun 06;7:198 - PubMed
  41. Lancet Infect Dis. 2020 Jun;20(6):697-706 - PubMed
  42. Nat Commun. 2017 Nov 13;8(1):1462 - PubMed
  43. J Immunol. 1997 Dec 15;159(12):5795-801 - PubMed
  44. Blood. 2009 Sep 10;114(11):2254-62 - PubMed
  45. J Exp Med. 2000 Jul 3;192(1):31-40 - PubMed
  46. Hum Mutat. 2016 Mar;37(3):235-41 - PubMed
  47. BMJ. 2019 Sep 17;366:l4923 - PubMed
  48. Stat Appl Genet Mol Biol. 2004;3:Article3 - PubMed
  49. J Allergy Clin Immunol. 2002 Apr;109(4):581-91 - PubMed
  50. Blood. 1999 Feb 1;93(3):942-51 - PubMed
  51. Curr Protoc Hum Genet. 2013 Jan;Chapter 7:Unit7.20 - PubMed
  52. Am J Transplant. 2018 Aug;18(8):2098-2099 - PubMed
  53. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3373-7 - PubMed
  54. Science. 1996 Jun 14;272(5268):1649-52 - PubMed
  55. Nat Protoc. 2009;4(7):1073-81 - PubMed

Publication Types

Grant support