Display options
Share it on

Methods Mol Biol. 2022;2443:101-131. doi: 10.1007/978-1-0716-2067-0_5.

Gramene: A Resource for Comparative Analysis of Plants Genomes and Pathways.

Methods in molecular biology (Clifton, N.J.)

Marcela Karey Tello-Ruiz, Pankaj Jaiswal, Doreen Ware

Affiliations

  1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  2. Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
  3. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. [email protected].
  4. USDA-ARS NAA Plant, Soil & Nutrition Laboratory Research Unit, Cornell University, Ithaca, NY, USA. [email protected].

PMID: 35037202 DOI: 10.1007/978-1-0716-2067-0_5

Abstract

Gramene is an integrated bioinformatics resource for accessing, visualizing, and comparing plant genomes and biological pathways. Originally targeting grasses, Gramene has grown to host annotations for over 90 plant genomes including agronomically important cereals (e.g., maize, sorghum, wheat, teff), fruits and vegetables (e.g., apple, watermelon, clementine, tomato, cassava), specialty crops (e.g., coffee, olive tree, pistachio, almond), and plants of special or emerging interest (e.g., cotton, tobacco, cannabis, or hemp). For some species, the resource includes multiple varieties of the same species, which has paved the road for the creation of species-specific pan-genome browsers. The resource also features plant research models, including Arabidopsis and C4 warm-season grasses and brassicas, as well as other species that fill phylogenetic gaps for plant evolution studies. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. This chapter outlines system requirements for end-users and database hosting, data types and basic navigation within Gramene, and provides examples of how to (1) explore Gramene's search results, (2) explore gene-centric comparative genomics data visualizations in Gramene, and (3) explore genetic variation associated with a gene locus. This is the first publication describing in detail Gramene's integrated search interface-intended to provide a simplified entry portal for the resource's main data categories (genomic location, phylogeny, gene expression, pathways, and external references) to the most complete and up-to-date set of plant genome and pathway annotations.

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Comparative genomics; Gene homology; Gene trees; Genetic variation; Genomes; Orthologs; Paralogs; Pathways; Phylogenetics; Structural variation; Synteny

References

  1. Tello-Ruiz MK, Stein J, Wei S, Youens-Clark K, Jaiswal P, Ware D (2016) Gramene: a resource for comparative analysis of plants genomes and pathways. Methods Mol Biol 1374:141–163 - PubMed
  2. Pilkington SM, Crowhurst R, Hilario E, Nardozza S, Fraser L, Peng Y, Gunaseelan K et al (2018) A manually annotated Actinidia chinensis var. Chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 19(1):257 - PubMed
  3. Luo M-C, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N et al (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551(7681):498–502 - PubMed
  4. Chamala S, Chanderbali AS, Der JP, Lan T, Walts B, Albert VA, dePamphilis CW et al (2013) Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science 342(6165):1516–1517 - PubMed
  5. Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342(6165):1241089 - PubMed
  6. Chen L-Y, VanBuren R, Paris M, Zhou H, Zhang X, Wai CM, Yan H et al (2019) The Bracteatus pineapple genome and domestication of clonally propagated crops. Nat Genet 51(10):1549–1558 - PubMed
  7. Briskine RV, Paape T, Shimizu-Inatsugi R, Nishiyama T, Akama S, Sese J, Shimizu KK (2017) Genome assembly and annotation of Arabidopsis Halleri, a model for heavy metal hyperaccumulation and evolutionary ecology. Mol Ecol Resour 17(5):1025–1036 - PubMed
  8. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, Fahlgren N et al (2011) The arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43(5):476–481 - PubMed
  9. Cheng C-Y, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J Cell Mol Biol 89(4):789–804 - PubMed
  10. Willing E-M, Rawat V, Mandáková T, Maumus F, James GV, Nordström KJV, Becker C et al (2015) Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat Plants 1(February):14023 - PubMed
  11. Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O et al (2014) The genome of the recently domesticated crop plant sugar beet (Beta Vulgaris). Nature 505(7484):546–549 - PubMed
  12. Fox SE, Preece J, Kimbrel JA, Marchini GL, Sage A, Youens-Clark K, Cruzan MB, Jaiswal P (2013) Sequencing and de novo transcriptome assembly of Brachypodium sylvaticum (Poaceae). Appl Plant Sci 1(3):1200011. https://doi.org/10.3732/apps.1200011 - PubMed
  13. Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J et al (2014) Plant genetics. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345(6199):950–953 - PubMed
  14. Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD et al (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15(6):R77 - PubMed
  15. Wang X, Wang H, Wang J, Sun R, Jian W, Liu S, Bai Y et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039 - PubMed
  16. camelinadb.ca (n.d.) Genome prairie - prairie gold. http://camelinadb.ca/index.html . Accessed 14 Sep 2020 - PubMed
  17. Agricultural Genomics Foundation (n.d.) Cannabis Genome http://cannabisgenome.org/ . Accessed 14 Sep 2020 - PubMed
  18. Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB et al (2018) The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174(2):448–64.e24 - PubMed
  19. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250 - PubMed
  20. Janouškovec J, Liu S-L, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ (2013) Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One 8(3):e59001 - PubMed
  21. Guo S, Zhao S, Sun H, Wang X, Shan W, Lin T, Ren Y et al (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 51(11):1616–1623 - PubMed
  22. Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X et al (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32(7):656–662 - PubMed
  23. Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345(6201):1181–1184 - PubMed
  24. Islam MS, Saito JA, Emdad EM, Ahmed B, Islam MM, Halim A, Hossen QMM et al (2017) Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants 3(January):16223 - PubMed
  25. Castanera R, Ruggieri V, Pujol M, Garcia-Mas J, Casacuberta JM (2019) An improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes. Front Plant Sci 10:1815 - PubMed
  26. Huang S, Li R, Zhang Z, Li L, Xingfang G, Fan W, Lucas WJ et al (2009) The genome of the cucumber, Cucumis Sativus L. Nat Genet 41(12):1275–1281 - PubMed
  27. Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima S-Y, Mori T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428(6983):653–657 - PubMed
  28. Scaglione D, Reyes-Chin-Wo S, Acquadro A, Froenicke L, Portis E, Beitel C, Tirone M et al (2016) The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of f1 progeny. Sci Rep 6(January):19427 - PubMed
  29. Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48(6):657–666 - PubMed
  30. Tamiru M, Natsume S, Takagi H, White B, Yaegashi H, Shimizu M, Yoshida K et al (2017) Genome sequencing of the staple food crop white guinea yam enables the development of a molecular marker for sex determination. BMC Biol 15(1):86 - PubMed
  31. Carballo J, Santos BACM, Zappacosta D, Garbus I, Selva JP, Gallo CA, Díaz A, Albertini E, Caccamo M, Echenique V (2019) A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality. Sci Rep 9(1):10250 - PubMed
  32. Cannarozzi G, Plaza-Wüthrich S, Esfeld K, Larti S, Wilson YS, Girma D, de Castro E et al (2014) Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis Tef). BMC Genomics 15(July):581 - PubMed
  33. Schönknecht G, Chen W-H, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Bräutigam A et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339(6124):1207–1210 - PubMed
  34. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183 - PubMed
  35. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D et al (2012) Repeated polyploidization of gossypium genomes and the evolution of spinnable cotton fibres. Nature 492(7429):423–427 - PubMed
  36. Badouin H, Gouzy J, Grassa CJ, Florent Murat S, Staton E, Cottret L, Lelandais-Brière C et al (2017) The sunflower genome provides insights into oil metabolism, flowering and asterid evolution. Nature 546(7656):148–152 - PubMed
  37. Schreiber M, Mascher M, Wright J, Padmarasu S, Himmelbach A, Heavens D, Milne L, Clavijo BJ, Stein N, Waugh R (2020) A genome assembly of the barley ‘transformation reference’ cultivar golden promise. G3 10(6):1823–1827 - PubMed
  38. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):427–433 - PubMed
  39. Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C, Eserman L et al (2018) Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun 9(1):4580 - PubMed
  40. Stein JC, Yeisoo Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K et al (2018) Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet 50(2):285–296 - PubMed
  41. Hane JK, Ming Y, Kamphuis LG, Nelson MN, Garg G, Atkins CA, Bayer PE et al (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol J 15(3):318–330 - PubMed
  42. Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H et al (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49(7):1099–1106 - PubMed
  43. Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5(1):88–94 - PubMed
  44. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171(2):287–304.e15 - PubMed
  45. Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L et al (2014) An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15(April):312 - PubMed
  46. D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, Noel B et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217 - PubMed
  47. Xu S, Brockmöller T, Navarro-Quezada A, Kuhl H, Gase K, Ling Z, Zhou W et al (2017) Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proc Natl Acad Sci U S A 114(23):6133–6138 - PubMed
  48. Zhang L, Chen F, Zhang X, Li Z, Zhao Y, Lohaus R, Chang X et al (2020) The water lily genome and the early evolution of flowering plants. Nature 577(7788):79–84 - PubMed
  49. Unver T, Zhangyan W, Sterck L, Turktas M, Lohaus R, Li Z, Yang M et al (2017) Genome of wild olive and the evolution of oil biosynthesis. Proc Natl Acad Sci U S A 114(44):E9413–E9422 - PubMed
  50. Zhang Y, Zhang S, Liu H, Binying F, Li L, Xie M, Song Y et al (2015) Genome and comparative transcriptomics of African wild rice Oryza longistaminata provide insights into molecular mechanism of rhizomatousness and self-incompatibility. Mol Plant 8(11):1683–1686 - PubMed
  51. Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C et al (2007) The tiny Eukaryote ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104(18):7705–7710 - PubMed
  52. Lovell JT, Jenkins J, Lowry DB, Mamidi S, Sreedasyam A, Weng X, Barry K et al (2018) The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nat Commun 9(1):5213 - PubMed
  53. Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-Oñate M, Minoche AE, Erb I, Câmara F et al (2016) Genome and transcriptome analysis of the mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17(February):32 - PubMed
  54. Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M et al (2018) The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J Cell Mol Biol 93(3):515–533 - PubMed
  55. Zeng L, Xiao-Long T, Dai H, Han F-M, Bing-She L, Wang M-S, Nanaei HA et al (2019) Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biol 20(1):79 - PubMed
  56. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604 - PubMed
  57. Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe S (2017) The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 24(5):499–508 - PubMed
  58. Alioto T, Alexiou KG, Bardil A, Barteri F, Castanera R, Cruz F, Dhingra A et al (2020) Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant J Cell Mol Biol 101(2):455–472 - PubMed
  59. International Peach Genome Initiative, Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494 - PubMed
  60. Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P et al (2018) The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50(6):772–777 - PubMed
  61. Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F et al (2018) Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet 50(11):1565–1573 - PubMed
  62. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, de Pamphilis C, Albert VA et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332(6032):960–963 - PubMed
  63. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561 - PubMed
  64. Zhang G, Liu X, Quan Z, Cheng S, Xun X, Pan S, Xie M et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30(6):549–554 - PubMed
  65. Mamidi S, Healey A, Huang P, Grimwood J, Jenkins J, Barry K, Sreedasyam A et al (2019) The Setaria viridis genome and diversity panel enables discovery of a novel domestication gene. bioRxiv - PubMed
  66. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641 - PubMed
  67. Potato Genome Sequencing Consortium, Xun X, Pan S, Cheng S, Zhang B, Desheng M, Ni P et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195 - PubMed
  68. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G et al (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556 - PubMed
  69. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s Indigenous cereal crop sorghum. Nat Commun 4:2320 - PubMed
  70. Argout X, Martin G, Droc G, Fouet O, Labadie K, Rivals E, Aury JM, Lanaud C (2017) The cacao criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies. BMC Genomics 18(1):730 - PubMed
  71. Cocoa Genome Hub (n.d.). https://cocoa-genome-hub.southgreen.fr . Accessed 11 Oct 2020 - PubMed
  72. Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M et al (2011) The genome of Theobroma cacao. Nat Genet 43(2):101–108 - PubMed
  73. Cacao Genome Database (n.d.) Cacao genome project. https://www.cacaogenomedb.org . Accessed 11 Oct 2020 - PubMed
  74. Vega D, Jose J, Ayling S, Hegarty M, Kudrna D, Goicoechea JL, Ergon Å, Rognli OA et al (2015) Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci Rep 5(November):17394 - PubMed
  75. International Wheat Genome Sequencing Consortium (IWGSC), IWGSC RefSeq Principal Investigators, Appels R, Eversole K, Feuillet C, Keller B, Rogers J et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191. https://doi.org/10.1126/science.aar7191 - PubMed
  76. Designing Future Wheat (n.d.). https://designingfuturewheat.org.uk . Accessed 11 Oct 2020 - PubMed
  77. Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346):93–97 - PubMed
  78. Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D et al (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51(5):885–895 - PubMed
  79. Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H et al (2013) Draft genome of the wheat a-genome progenitor Triticum urartu. Nature 496(7443):87–90 - PubMed
  80. Kang YJ, Satyawan D, Shim S, Lee T, Lee J, Hwang WJ, Kim SK et al (2015) Draft genome sequence of Adzuki bean, Vigna angularis. Sci Rep 5(January):8069 - PubMed
  81. Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha B-K, Jun TH et al (2014) Genome sequence of mungbean and insights into evolution within vigna species. Nat Commun 5(November):5443 - PubMed
  82. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467 - PubMed
  83. Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546(7659):524–527 - PubMed
  84. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Jorge Alvarez-Jarreta M, Amode R et al (2020) Ensembl 2020. Nucleic Acids Res 48(D1):D682–D688 - PubMed
  85. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48(D1):D498–D503 - PubMed
  86. Naithani S, Gupta P, Preece J, D’Eustachio P, Elser JL, Garg P, Dikeman DA et al (2020) Plant reactome: a knowledgebase and resource for comparative pathway analysis. Nucleic Acids Res 48(D1):D1093–D1103 - PubMed
  87. Papatheodorou I, Moreno P, Manning J, Fuentes AM-P, George N, Fexova S, Fonseca NA et al (2020) Expression atlas update: from tissues to single cells. Nucleic Acids Res 48(D1):D77–D83 - PubMed
  88. Gladman N, Jiao Y, Lee YK, Zhang L, Chopra R, Regulski M, Burow G et al (2019) Fertility of pedicellate spikelets in sorghum is controlled by a jasmonic acid regulatory module. Int J Mol Sci 20(19):4951. https://doi.org/10.3390/ijms20194951 - PubMed
  89. Tello-Ruiz MK, Naithani S, Stein JC, Gupta P, Campbell M, Olson A, Wei S et al (2018) Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res 46(D1):D1181–D1189 - PubMed
  90. Tello-Ruiz MK, Naithani S, Gupta P, Olson A, Wei S, Preece J, Jiao Y et al (2018) Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res 49(D1):D1452–D1463 - PubMed
  91. Lyne R, Sullivan J, Butano D, Contrino S, Heimbach J, Fengyuan H, Kalderimis A et al (2015) Cross-organism analysis using InterMine. Genesis 53(8):547–560 - PubMed
  92. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515 - PubMed
  93. Amid C, Alako BTF, Kadhirvelu VB, Burdett T, Burgin J, Fan J, Harrison PW et al (2020) The European Nucleotide Archive in 2019. Nucleic Acids Res 48(D1):D70–D76 - PubMed
  94. Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R (2009) QuickGO: a web-based tool for gene ontology searching. Bioinformatics 25(22):3045–3046 - PubMed
  95. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360 - PubMed
  96. Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H et al (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3(7):e123 - PubMed
  97. Goche T, Shargie NG, Cummins I, Brown AP, Chivasa S, Ngara R (2020) Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci Rep 10(1):11835 - PubMed
  98. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11(5):863–874 - PubMed
  99. Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O et al (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43(W1):W589–W598 - PubMed

Publication Types