Display options
Share it on

Methods Mol Biol. 2022;2443:511-525. doi: 10.1007/978-1-0716-2067-0_27.

Plant Reactome and PubChem: The Plant Pathway and (Bio)Chemical Entity Knowledgebases.

Methods in molecular biology (Clifton, N.J.)

Parul Gupta, Sushma Naithani, Justin Preece, Sunghwan Kim, Tiejun Cheng, Peter D'Eustachio, Justin Elser, Evan E Bolton, Pankaj Jaiswal

Affiliations

  1. Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
  2. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
  3. NYU Grossman School of Medicine, New York, NY, USA.
  4. Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA. [email protected].

PMID: 35037224 DOI: 10.1007/978-1-0716-2067-0_27

Abstract

Plant Reactome (https://plantreactome.gramene.org) and PubChem ( https://pubchem.ncbi.nlm.nih.gov ) are two reference data portals and resources for curated plant pathways, small molecules, metabolites, gene products, and macromolecular interactions. Plant Reactome knowledgebase, a conceptual plant pathway network, is built by biocuration and integrating (bio)chemical entities, gene products, and macromolecular interactions. It provides manually curated pathways for the reference species Oryza sativa (rice) and gene orthology-based projections that extend pathway knowledge to 106 plant species. Currently, it hosts 320 reference pathways for plant metabolism, hormone signaling, transport, genetic regulation, plant organ development and differentiation, and biotic and abiotic stress responses. In addition to the pathway browsing and search functions, the Plant Reactome provides the analysis tools for pathway comparison between reference and projected species, pathway enrichment in gene expression data, and overlay of gene-gene interaction data on pathways. PubChem, a popular reference database of (bio)chemical entities, provides information on small molecules and other types of chemical entities, such as siRNAs, miRNAs, lipids, carbohydrates, and chemically modified nucleotides. The data in PubChem is collected from hundreds of data sources, including Plant Reactome. This chapter provides a brief overview of the Plant Reactome and the PubChem knowledgebases, their association to other public resources providing accessory information, and how users can readily access the contents.

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Biochemical entities; Comparative pathway analysis; Developmental pathway; Gene–gene interaction; Gramene; Metabolic Pathway; Plant Reactome; Plant pathway database; PubChem; Regulatory pathway; Small molecules; Transcriptional network

References

  1. Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol Biol 1374:115–140. https://doi.org/10.1007/978-1-4939-3167-5_6 - PubMed
  2. Tello-Ruiz MK, Stein J, Wei S et al (2016) Gramene: a resource for comparative analysis of plants genomes and pathways. In: Edwards D (ed) Plant bioinformatics: methods and protocols. Springer, New York, New York, NY, pp 141–163 - PubMed
  3. Gupta P, Naithani S, Tello-Ruiz MK et al (2016) Gramene database: navigating plant comparative genomics resources. Curr Plant Biol 7–8:10–15. https://doi.org/10.1016/j.cpb.2016.12.005 - PubMed
  4. Tello-Ruiz MK, Naithani S, Gupta P et al (2021) Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res 49:D1452–D1463. https://doi.org/10.1093/nar/gkaa979 - PubMed
  5. Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. https://doi.org/10.1093/nar/gkr944 - PubMed
  6. Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53:661–673. https://doi.org/10.1111/j.1365-313X.2007.03326.x - PubMed
  7. Kanehisa M (1997) Linking databases and organisms: GenomeNet resources in Japan. Trends Biochem Sci 22:442–444. https://doi.org/10.1016/S0968-0004(97)01130-4 - PubMed
  8. Reiser L, Subramaniam S, Li D, Huala E (2017) Using the Arabidopsis information resource (TAIR) to find information about Arabidopsis genes. Curr Protoc Bioinformatics 60:1.11.1–1.11.45. https://doi.org/10.1002/cpbi.36 - PubMed
  9. Portwood JL, Woodhouse MR, Cannon EK et al (2019) MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res 47:D1146–D1154. https://doi.org/10.1093/nar/gky1046 - PubMed
  10. Fernandez-Pozo N, Menda N, Edwards JD et al (2015) The sol genomics network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res 43:D1036–D1041. https://doi.org/10.1093/nar/gku1195 - PubMed
  11. Blake VC, Woodhouse MR, Lazo GR et al (2019) GrainGenes: centralized small grain resources and digital platform for geneticists and breeders. Database 2019:baz065. https://doi.org/10.1093/database/baz065 - PubMed
  12. Sakai H, Lee SS, Tanaka T et al (2013) Rice annotation project database (RAP-DB): an integrative and interactive database for Rice genomics. Plant Cell Physiol 54:e6. https://doi.org/10.1093/pcp/pcs183 - PubMed
  13. Kurata N, Yamazaki Y (2006) Oryzabase. An integrated biological and genome information database for rice. Plant Physiol 140:12–17. https://doi.org/10.1104/pp.105.063008 - PubMed
  14. Brown AV, Conners SI, Huang W et al (2021) A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 49:D1496–D1501. https://doi.org/10.1093/nar/gkaa1107 - PubMed
  15. Jaiswal P, Usadel B (2016) Plant pathway databases. In: Edwards D (ed) Plant bioinformatics: methods and protocols. Springer, New York, NY, pp 71–87 - PubMed
  16. Naithani S, Preece J, D’Eustachio P et al (2017) Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res 45:D1029–D1039. https://doi.org/10.1093/nar/gkw932 - PubMed
  17. Naithani S, Gupta P, Preece J et al (2020) Plant Reactome: a knowledgebase and resource for comparative pathway analysis. Nucleic Acids Res 48:D1093–D1103. https://doi.org/10.1093/nar/gkz996 - PubMed
  18. Kanehisa M, Sato Y, Kawashima M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070 - PubMed
  19. Schläpfer P, Zhang P, Wang C et al (2017) Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 173:2041–2059. https://doi.org/10.1104/pp.16.01942 - PubMed
  20. Caspi R, Billington R, Fulcher CA et al (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46:D633–D639. https://doi.org/10.1093/nar/gkx935 - PubMed
  21. Thimm O, Bläsing O, Gibon Y et al (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939. https://doi.org/10.1111/j.1365-313X.2004.02016.x - PubMed
  22. Waese J, Provart NJ (2017) The bio-analytic resource for plant biology. In: van Dijk ADJ (ed) Plant genomics databases: methods and protocols. Springer, New York, NY, pp 119–148 - PubMed
  23. Lee T, Yang S, Kim E et al (2015) AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res 43:D996–D1002. https://doi.org/10.1093/nar/gku1053 - PubMed
  24. Lee T, Oh T, Yang S et al (2015) RiceNet v2: an improved network prioritization server for rice genes. Nucleic Acids Res 43:W122–W127. https://doi.org/10.1093/nar/gkv253 - PubMed
  25. Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42:D358–D363. https://doi.org/10.1093/nar/gkt1115 - PubMed
  26. Isserlin R, El-Badrawi RA, Bader GD (2011) The biomolecular interaction network database in PSI-MI 2.5. Database 2011:baq037. https://doi.org/10.1093/database/baq037 - PubMed
  27. Licata L, Briganti L, Peluso D et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–D861. https://doi.org/10.1093/nar/gkr930 - PubMed
  28. Oughtred R, Stark C, Breitkreutz B-J et al (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47:D529–D541. https://doi.org/10.1093/nar/gky1079 - PubMed
  29. The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. https://doi.org/10.1093/nar/gkaa1100 - PubMed
  30. Schneider M, Lane L, Boutet E et al (2009) The UniProtKB/Swiss-Prot knowledgebase and its plant proteome annotation program. J Proteome 72:567–573. https://doi.org/10.1016/j.jprot.2008.11.010 - PubMed
  31. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242 - PubMed
  32. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141 - PubMed
  33. Volders P-J, Anckaert J, Verheggen K et al (2019) LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res 47:D135–D139. https://doi.org/10.1093/nar/gky1031 - PubMed
  34. RNAcentral Consortium (2021) RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res 49:D212–D220. https://doi.org/10.1093/nar/gkaa921 - PubMed
  35. Hastings J, Owen G, Dekker A et al (2016) ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 44:D1214–D1219. https://doi.org/10.1093/nar/gkv1031 - PubMed
  36. Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. https://doi.org/10.1093/nar/gkaa971 - PubMed
  37. Mendez D, Gaulton A, Bento AP et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47:D930–D940. https://doi.org/10.1093/nar/gky1075 - PubMed
  38. Tanabe M, Kanehisa M (2012) Using the KEGG database resource. Curr Protoc Bioinformatics. Chapter 1:Unit1.12. https://doi.org/10.1002/0471250953.bi0112s38 - PubMed
  39. Jassal B, Matthews L, Viteri G et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48:D498–D503. https://doi.org/10.1093/nar/gkz1031 - PubMed
  40. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213. https://doi.org/10.1093/nar/gkv951 - PubMed
  41. Kim S (2016) Getting the most out of PubChem for virtual screening. Expert Opin Drug Discov 11:843–855. https://doi.org/10.1080/17460441.2016.1216967 - PubMed
  42. NCBI Resource Coordinators (2016) Database resources of the National Center for biotechnology information. Nucleic Acids Res 44:D7–D19. https://doi.org/10.1093/nar/gkv1290 - PubMed
  43. Kim S, Thiessen PA, Bolton EE, Bryant SH (2015) PUG-SOAP and PUG-REST: web services for programmatic access to chemical information in PubChem. Nucleic Acids Res 43:W605–W611. https://doi.org/10.1093/nar/gkv396 - PubMed
  44. Kim S, Thiessen PA, Cheng T et al (2018) An update on PUG-REST: RESTful interface for programmatic access to PubChem. Nucleic Acids Res 46:W563–W570. https://doi.org/10.1093/nar/gky294 - PubMed
  45. Kim S, Thiessen PA, Cheng T et al (2019) PUG-view: programmatic access to chemical annotations integrated in PubChem. J Cheminform 11. https://doi.org/10.1186/s13321-019-0375-2 - PubMed
  46. The Gene Ontology Consortium (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43:D1049–D1056. https://doi.org/10.1093/nar/gku1179 - PubMed
  47. The Gene Ontology Consortium (2021) The gene ontology resource: enriching a GOld mine. Nucleic Acids Res 49:D325–D334. https://doi.org/10.1093/nar/gkaa1113 - PubMed
  48. Papatheodorou I, Fonseca NA, Keays M et al (2018) Expression atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res 46:D246–D251. https://doi.org/10.1093/nar/gkx1158 - PubMed
  49. Cooper L, Meier A, Laporte M-A et al (2018) The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics. Nucleic Acids Res 46:D1168–D1180. https://doi.org/10.1093/nar/gkx1152 - PubMed
  50. Krishnakumar V, Hanlon MR, Contrino S et al (2015) Araport: the Arabidopsis information portal. Nucleic Acids Res 43:D1003–D1009. https://doi.org/10.1093/nar/gku1200 - PubMed
  51. Jung S, Lee T, Cheng C-H et al (2019) 15 years of GDR: new data and functionality in the genome database for Rosaceae. Nucleic Acids Res 47:D1137–D1145. https://doi.org/10.1093/nar/gky1000 - PubMed
  52. Falk T, Herndon N, Grau E et al (2018) Growing and cultivating the forest genomics database. TreeGenes Database (Oxford) 2018:1–11. https://doi.org/10.1093/database/bay084 - PubMed
  53. Dash S, Campbell JD, Cannon EK et al (2016) Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family. Nucleic Acids Res 44:D1181–D1188. https://doi.org/10.1093/nar/gkv1159 - PubMed
  54. Stalker T, Wilson RF (2015) Peanuts: genetics, processing, and utilization. Elsevier, Amsterdam - PubMed
  55. del-Toro N, Dumousseau M, Orchard S et al (2013) A new reference implementation of the PSICQUIC web service. Nucleic Acids Res 41:W601–W606. https://doi.org/10.1093/nar/gkt392 - PubMed
  56. Hähnke VD, Kim S, Bolton EE (2018) PubChem chemical structure standardization. J Cheminform 10:36. https://doi.org/10.1186/s13321-018-0293-8 - PubMed
  57. Karp PD, Billington R, Caspi R et al (2019) The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform 20:1085–1093. https://doi.org/10.1093/bib/bbx085 - PubMed
  58. Slenter DN, Kutmon M, Hanspers K et al (2018) WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res 46:D661–D667. https://doi.org/10.1093/nar/gkx1064 - PubMed
  59. Wishart DS, Li C, Marcu A et al (2020) PathBank: a comprehensive pathway database for model organisms. Nucleic Acids Res 48:D470–D478. https://doi.org/10.1093/nar/gkz861 - PubMed
  60. O’Donnell VB, Dennis EA, Wakelam MJO, Subramaniam S (2019) LIPID MAPS: serving the next generation of lipid researchers with tools, resources, data, and training. Sci Signal 12:eaaw2964. https://doi.org/10.1126/scisignal.aaw2964 - PubMed
  61. Whirl-Carrillo M, McDonagh EM, Hebert JM et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417. https://doi.org/10.1038/clpt.2012.96 - PubMed
  62. Schaefer CF, Anthony K, Krupa S et al (2009) PID: the pathway interaction database. Nucleic Acids Res 37:D674–D679. https://doi.org/10.1093/nar/gkn653 - PubMed
  63. Yamamoto S, Sakai N, Nakamura H et al (2011) INOH: ontology-based highly structured database of signal transduction pathways. Database 2011:bar052. https://doi.org/10.1093/database/bar052 - PubMed
  64. Ostaszewski M, Mazein A, Gillespie ME et al (2020) COVID-19 disease map, building a computational repository of SARS-CoV-2 virus-host interaction mechanisms. Scientific Data 7:136. https://doi.org/10.1038/s41597-020-0477-8 - PubMed
  65. Ware D, Jaiswal P, Ni J et al (2002) Gramene: a resource for comparative grass genomics. Nucleic Acids Res 30:103–105 - PubMed
  66. Hooper CM, Castleden IR, Aryamanesh N et al (2016) Finding the subcellular location of barley, wheat, Rice and maize proteins: the compendium of crop proteins with annotated locations (cropPAL). Plant Cell Physiol 57:e9–e9. https://doi.org/10.1093/pcp/pcv170 - PubMed
  67. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971. https://doi.org/10.1038/nprot.2007.131 - PubMed
  68. Joyce BL, Haug-Baltzell AK, Hulvey JP et al (2017) Leveraging CyVerse resources for De novo comparative transcriptomics of underserved (non-model) organisms. J Vis Exp 123:55009. https://doi.org/10.3791/55009 - PubMed
  69. Geer LY, Marchler-Bauer A, Geer RC et al (2010) The NCBI BioSystems database. Nucleic Acids Res 38:D492–D496. https://doi.org/10.1093/nar/gkp858 - PubMed

Publication Types