Display options
Share it on

Biophys J. 1993 Jun;64(6):1657-67. doi: 10.1016/S0006-3495(93)81538-8.

Harmonic system analysis of the algae Valonia utricularis: contribution of an electrogenic transport system to gain and phase-shift of the transfer function.

Biophysical journal

J Wang, G Wehner, R Benz, U Zimmermann

Affiliations

  1. Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, D-8700 Würzburg, Germany.

PMID: 19431898 PMCID: PMC1262501 DOI: 10.1016/S0006-3495(93)81538-8

Abstract

Cell membrane properties of the giant marine alga Valonia utricularis were measured in the frequency domain between 1 Hz and 10 MHz by harmonic system analysis. Harmonic analysis was performed by imposing a sinusoidal electrical voltage on the cell interior via an internal microelectrode. Gain and phase-shift of the resulting sinusoidal membrane voltage were measured over the whole frequency range with an internal voltage microelectrode. Bode plots of gain and phase-shift allowed the determination of the electrical parameters of the equivalent electronic circuits of the cell membrane of V. utricularis, which showed dynamic and passive properties dependent on the pH of the external aqueous solution. The dynamic components of the membrane impedance were caused by an electrogenic transport system for chloride described previously (Wang, J., G. Wehner, R. Benz, and U. Zimmermann. 1991. Biophys. J. 59:235-248). The kinetic and equilibrium parameters of the transport system could be evaluated from the fit of Bode plots of gain and phase-shift. The frequency domain technique revealed complete agreement of transport parameters with previously published results. The data demonstrate that an electrogenic transport system can be driven by an oscillating electric field.

References

  1. J Neurophysiol. 1989 Oct;62(4):924-34 - PubMed
  2. J Membr Biol. 1992 Mar;126(2):137-45 - PubMed
  3. Biophys J. 1983 Mar;41(3):381-98 - PubMed
  4. Biophys J. 1990 Oct;58(4):969-74 - PubMed
  5. Q Rev Biophys. 1981 Nov;14(4):513-98 - PubMed
  6. Am J Physiol. 1988 Nov;255(5 Pt 2):R677-92 - PubMed
  7. Biol Cybern. 1989;61(4):255-64 - PubMed
  8. J Membr Biol. 1976 Oct 20;29(1-2):81-94 - PubMed
  9. J Biol Chem. 1990 May 5;265(13):7260-7 - PubMed
  10. Med Biol Eng Comput. 1990 Mar;28(2):182-6 - PubMed
  11. J Biol Chem. 1984 Jun 10;259(11):7155-62 - PubMed
  12. J Membr Biol. 1975 Dec 4;25(1-2):183-208 - PubMed
  13. IEEE Trans Biomed Eng. 1987 Sep;34(9):749-52 - PubMed
  14. Biophys J. 1990 Apr;57(4):689-96 - PubMed
  15. Biophys J. 1983 Jul;43(1):13-26 - PubMed
  16. Biochim Biophys Acta. 1992 Mar 26;1113(1):53-70 - PubMed
  17. Biophysik. 1966;3(2):181-201 - PubMed
  18. Annu Rev Physiol. 1988;50:273-90 - PubMed
  19. Plant Physiol. 1981 Apr;67(4):825-31 - PubMed
  20. J Membr Biol. 1976 Jun 9;27(1-2):171-91 - PubMed
  21. IEEE Trans Biomed Eng. 1984 Dec;31(12):827-32 - PubMed
  22. Nature. 1986 Oct 16-22;323(6089):628-30 - PubMed
  23. Biophys J. 1993 Apr;64(4):1004-16 - PubMed
  24. Biophys J. 1991 Jan;59(1):235-48 - PubMed

Publication Types