Display options
Share it on

Proteome Sci. 2011 Nov 15;9(1):71. doi: 10.1186/1477-5956-9-71.

Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome.

Proteome science

Hazir Rahman, Muhammad Qasim, Frank C Schultze, Michael Oellerich, Abdul R Asif

Affiliations

  1. Department of Clinical Chemistry, University Medical Centre, Goettingen, Germany. [email protected].

PMID: 22085958 PMCID: PMC3280938 DOI: 10.1186/1477-5956-9-71

Abstract

BACKGROUND: The effects of fetal calf serum (FCS) heat inactivation and bacterial lipopolysaccharide (LPS) contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM) cells were grown in FCS, either non-heated, or heat inactivated, having low (< 1 EU/mL) or regular (< 30 EU/mL) LPS concentrations. Protein lysates were resolved by 2-DE followed by phospho-specific and silver nitrate staining. Differentially regulated spots were identified by nano LC ESI Q-TOF MS/MS analysis.

RESULTS: A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA) were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE) as compared to cells grown in media with non-heated FCS (NHE). Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN) displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1).

CONCLUSION: The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome.

References

  1. Electrophoresis. 2000 Apr;21(6):1037-53 - PubMed
  2. Proc Soc Exp Biol Med. 1950 Jan;73(1):1-8 - PubMed
  3. J Transl Med. 2006 Oct 04;4:40 - PubMed
  4. J Mater Sci Mater Med. 2004 Apr;15(4):497-501 - PubMed
  5. J Exp Med. 2004 Dec 20;200(12):1623-33 - PubMed
  6. J Clin Invest. 2006 Feb;116(2):485-94 - PubMed
  7. Mol Immunol. 2007 Apr;44(11):2850-9 - PubMed
  8. Biochem J. 1990 Apr 1;267(1):261-4 - PubMed
  9. Mol Cell Biol. 1999 Jun;19(6):4113-20 - PubMed
  10. Brain Res Brain Res Protoc. 1997 May;1(2):186-94 - PubMed
  11. Cancer Res. 2011 Mar 1;71(5):1989-98 - PubMed
  12. Cancer Res. 1986 Mar;46(3):1015-29 - PubMed
  13. Cell Immunol. 2005 Feb;233(2):85-9 - PubMed
  14. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  15. Mech Ageing Dev. 1994 Jan;73(1):27-37 - PubMed
  16. J Immunol. 1983 Apr;130(4):1774-9 - PubMed
  17. J Immunol. 2007 Jul 1;179(1):41-4 - PubMed
  18. Am J Physiol. 1998 Sep;275(3):C740-7 - PubMed
  19. Am J Pathol. 1991 Aug;139(2):371-82 - PubMed
  20. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  21. Nat Rev Drug Discov. 2006 Sep;5(9):785-99 - PubMed
  22. Immunol Res. 1993;12(3):244-57 - PubMed
  23. Mol Cell Biol. 2002 Sep;22(17):6209-21 - PubMed
  24. J Biol Chem. 2000 Nov 17;275(46):36380-7 - PubMed
  25. Clin Chim Acta. 2006 Dec;374(1-2):106-15 - PubMed
  26. Biochim Biophys Acta. 1980 Dec 11;610(2):371-83 - PubMed
  27. Mol Cell Proteomics. 2009 Jan;8(1):201-13 - PubMed
  28. J Inherit Metab Dis. 2008 Apr;31(2):226-9 - PubMed
  29. J Cell Sci. 1972 Jan;10(1):137-52 - PubMed
  30. DNA Seq. 2001;12(3):203-8 - PubMed
  31. J Investig Med. 2002 Jul;50(4):293-301 - PubMed
  32. J Mol Evol. 2004 Oct;59(4):464-77 - PubMed
  33. Mol Biol Rep. 2010 Jun;37(5):2235-9 - PubMed
  34. J Biol Chem. 2004 Jun 4;279(23):24444-51 - PubMed
  35. Eur J Biochem. 2000 Jun;267(11):3301-8 - PubMed
  36. Free Radic Res. 2001 Apr;34(4):325-36 - PubMed
  37. Cell Motil Cytoskeleton. 2006 Feb;63(2):77-87 - PubMed
  38. J Proteome Res. 2006 Apr;5(4):954-62 - PubMed
  39. Immunology. 1979 Jan;36(1):37-45 - PubMed
  40. Immunol Commun. 1976;5(1-2):75-86 - PubMed
  41. RNA. 2005 Apr;11(4):470-86 - PubMed
  42. In Vitro Cell Dev Biol. 1990 Dec;26(12):1121-2 - PubMed
  43. Annu Rev Biochem. 2002;71:635-700 - PubMed
  44. J Cell Physiol. 1992 Jan;150(1):52-8 - PubMed
  45. Cell Prolif. 2008 Apr;41(2):292-8 - PubMed
  46. Anal Chem. 1996 Mar 1;68(5):850-8 - PubMed
  47. J Cell Physiol. 1986 Jul;128(1):9-17 - PubMed
  48. J Immunol Methods. 1999 Mar 4;223(2):249-54 - PubMed
  49. Trends Biochem Sci. 1997 Jan;22(1):18-22 - PubMed
  50. J Biochem. 1991 Sep;110(3):423-8 - PubMed
  51. Gynecol Obstet Invest. 2009;68(1):40-52 - PubMed
  52. Br J Cancer. 1989 Jan;59(1):61-7 - PubMed
  53. Cancer Res. 2011 Apr 15;71(8):2815-20 - PubMed
  54. Mol Immunol. 1980 Jun;17(6):741-8 - PubMed
  55. J Biol Chem. 1988 Apr 15;263(11):5098-103 - PubMed
  56. Biomaterials. 2005 Dec;26(34):6811-7 - PubMed
  57. Lab Invest. 2010 Feb;90(2):168-79 - PubMed
  58. Methods Enzymol. 1995;260:82-96 - PubMed
  59. Ann N Y Acad Sci. 2007 Jan;1096:70-7 - PubMed
  60. J Biol Chem. 2000 Nov 17;275(46):36152-7 - PubMed
  61. Transplantation. 2000 Dec 27;70(12):1780-7 - PubMed
  62. Int J Biochem Cell Biol. 2004 Mar;36(3):379-85 - PubMed
  63. Lupus. 1995 Aug;4(4):297-303 - PubMed
  64. Biochim Biophys Acta. 1978 Dec 21;521(2):726-38 - PubMed
  65. J Immunol Methods. 2002 Jun 1;264(1-2):135-51 - PubMed

Publication Types