Display options
Share it on

N Am J Med Sci. 2011 Feb;3(2):63-9. doi: 10.4297/najms.2011.363.

Ventilatory response to high inspired carbon dioxide concentrations in anesthetized dogs.

North American journal of medical sciences

Jack A Loeppky, Ray Risling

Affiliations

  1. 2725 7th Street South, Cranbrook, British Columbia, V1C 4R8, Canada.

PMID: 22540067 PMCID: PMC3336888 DOI: 10.4297/najms.2011.363

Abstract

BACKGROUND: The ventilation ( ) response to inspired CO(2) has been extensively studied, but rarely with concentrations >10%.

AIMS: These experiments were performed to determine whether would increase correspondingly to higher concentrations and according to conventional chemoreceptor time delays.

MATERIALS AND METHODS: We exposed anesthetized dogs acutely, with and without vagotomy and electrical stimulation of the right vagus, to 20-100% CO(2)-balance O(2) and to 0 and 10% O(2)-balance N(2).

RESULTS: The time delays decreased and response magnitude increased with increasing concentrations (p<0.01), but at higher concentrations the time delays were shorter than expected, i.e., 0.5 s to double at 100% CO(2), with the response to 0% O(2) being ~3 s slower. Right vagotomy significantly reduced baseline breathing frequency (fR), increased tidal volume (VT) and increased the time delay by ~3 s. Bilateral vagotomy further reduced baseline fR and , and reduced the response to CO(2) and increased the time delay by ~12 s. Electro-stimulation of the peripheral right vagus while inspiring CO(2) caused a 13 s asystole and further reduced and delayed the response, especially after bilateral vagotomy, shifting the mode from VT to fR.

CONCLUSIONS: Results indicate that airway or lung receptors responded to the rapid increase in lung H(+) and that vagal afferents and unimpaired circulation seem necessary for the initial rapid response to high CO(2) concentrations by receptors upstream from the aortic bodies.

Keywords: Central chemoreceptors; lung chemoreceptors; nociceptors; peripheral chemoreceptors; vagotomy

References

  1. J Appl Physiol Respir Environ Exerc Physiol. 1977 Dec;43(6):1075-9 - PubMed
  2. Respir Physiol Neurobiol. 2009 May 30;167(1):26-35 - PubMed
  3. Pulm Pharmacol Ther. 2008;21(1):208-13 - PubMed
  4. J Physiol. 1974 Jul;240(1):91-109 - PubMed
  5. Int J Biochem Cell Biol. 2003 Oct;35(10):1413-35 - PubMed
  6. J Physiol. 1931 Jun 26;72(2):175-85 - PubMed
  7. J Appl Physiol. 1952 Jan;4(7):535-48 - PubMed
  8. Respir Physiol. 1987 May;68(2):251-8 - PubMed
  9. J Appl Physiol (1985). 1996 Dec;81(6):2349-57 - PubMed
  10. Respir Physiol. 1990 Nov;82(2):217-26 - PubMed
  11. Physiol Rev. 1962 Jul;42:335-58 - PubMed
  12. Q J Exp Physiol Cogn Med Sci. 1961 Oct;46:323-34 - PubMed
  13. J Appl Physiol (1985). 2002 Jul;93(1):181-8 - PubMed
  14. J Appl Physiol (1985). 1994 Aug;77(2):697-705 - PubMed
  15. J Appl Physiol (1985). 1994 Jun;76(6):2672-9 - PubMed
  16. Pflugers Arch. 1982 Dec;395(4):285-92 - PubMed
  17. J Physiol. 1997 Apr 15;500 ( Pt 2):319-29 - PubMed
  18. J Appl Physiol (1985). 2006 Jan;100(1):13-9 - PubMed
  19. J Appl Physiol (1985). 1988 Jan;64(1):84-9 - PubMed
  20. Physiol Rev. 1947 Jan;27(1):1-38 - PubMed
  21. Biol Res. 1993;26(3):319-29 - PubMed
  22. Anesthesiology. 1975 Dec;43(6):628-34 - PubMed
  23. J Physiol. 1998 Aug 15;511 ( Pt 1):2 - PubMed
  24. J Physiol. 1932 Feb 8;74(2):156-62 - PubMed
  25. J Physiol. 1932 Dec 19;77(1):1-15 - PubMed
  26. J Physiol. 1987 Mar;384:1-26 - PubMed
  27. J Physiol. 2010 Jul 1;588(Pt 13):2455-71 - PubMed
  28. J Physiol. 1977 Dec;273(1):109-20 - PubMed
  29. Radiat Res. 1988 Aug;115(2):314-24 - PubMed
  30. Anesthesiology. 1967 Sep-Oct;28(5):856-65 - PubMed
  31. Adv Exp Med Biol. 1995;381:15-25 - PubMed
  32. Respir Physiol. 2001 Mar;125(1-2):33-45 - PubMed
  33. Q J Exp Physiol Cogn Med Sci. 1975 Oct;60(4):285-98 - PubMed
  34. Psychiatry Res. 1994 May;52(2):159-71 - PubMed
  35. J Appl Physiol. 1973 Aug;35(2):178-86 - PubMed

Publication Types