Display options
Share it on

J Amino Acids. 2012;2012:735076. doi: 10.1155/2012/735076. Epub 2012 Jul 22.

Correlation of TrpGly and GlyTrp Rotamer Structure with W7 and W10 UV Resonance Raman Modes and Fluorescence Emission Shifts.

Journal of amino acids

Azaria Solomon Eisenberg, Laura J Juszczak

Affiliations

  1. Department of Chemistry, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.

PMID: 22888404 PMCID: PMC3408653 DOI: 10.1155/2012/735076

Abstract

Tryptophyl glycine (TrpGly) and glycyl tryptophan (GlyTrp) dipeptides at pH 5.5 and pH 9.3 show a pattern of fluorescence emission shifts with the TrpGly zwitterion emission solely blue shifted. This pattern is matched by shifts in the UV resonance Raman (UVRR) W10 band position and the W7 Fermi doublet band ratio. Ab initio calculations show that the 1340 cm(-1) band of the W7 doublet is composed of three modes, two of which determine the W7 band ratios for the dipeptides. Molecular dynamics simulations show that the dipeptides take on two conformations: one with the peptide backbone extended; one with the backbone curled over the indole. The dihedral angle critical to these conformations is χ(1) and takes on three discrete values. Only the TrpGly zwitterion spends an appreciable amount of time in the extended backbone conformation as this is stabilized by two hydrogen bonds with the terminal amine cation. According to a Stark effect model, a positive charge near the pyrrole keeps the (1)L(a) transition at high energy, limiting fluorescence emission red shift, as observed for the TrpGly zwitterion. The hydrogen bond stabilized backbone provides a rationale for the C(methylene)-C(α)-C(carbonyl) W10 symmetric stretch that is unique to the TrpGly zwitterion.

References

  1. J Chem Theory Comput. 2008 Mar;4(3):435-47 - PubMed
  2. Biochemistry. 2011 May 3;50(17):3441-50 - PubMed
  3. Methods Enzymol. 2011;492:189-211 - PubMed
  4. J Biol Chem. 2002 Oct 4;277(40):37732-40 - PubMed
  5. Biochimie. 2009 Jul;91(7):857-67 - PubMed
  6. Biophys J. 2001 May;80(5):2093-109 - PubMed
  7. Biochemistry. 1997 Dec 16;36(50):15701-12 - PubMed
  8. Biochemistry. 2011 Jun 14;50(23):5163-71 - PubMed
  9. Eur Biophys J. 2010 Sep;39(10):1453-63 - PubMed
  10. PLoS One. 2010 Sep 02;5(9): - PubMed
  11. Angew Chem Int Ed Engl. 2007;46(27):5137-9 - PubMed
  12. Biophys J. 2011 May 4;100(9):2121-30 - PubMed
  13. Biochemistry. 2005 Mar 8;44(9):3306-15 - PubMed
  14. Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9627-32 - PubMed
  15. J Phys Chem A. 2010 Oct 14;114(40):10897-905 - PubMed
  16. Biophys J. 2010 Sep 22;99(6):1801-9 - PubMed
  17. Biochemistry. 2000 Jan 11;39(1):146-52 - PubMed
  18. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9459-64 - PubMed
  19. Biochemistry. 2011 May 17;50(19):3928-35 - PubMed
  20. J Phys Chem B. 2005 Aug 25;109(33):16132-41 - PubMed
  21. J Inorg Biochem. 2007 Nov;101(11-12):1776-85 - PubMed
  22. Biochemistry. 1991 May 28;30(21):5184-95 - PubMed
  23. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7998-8002 - PubMed
  24. J Phys Chem B. 2009 Nov 5;113(44):14769-78 - PubMed
  25. J Phys Chem B. 2009 Jan 8;113(1):382-8 - PubMed
  26. J Phys Chem B. 2010 Dec 30;114(51):17201-8 - PubMed
  27. Protein Expr Purif. 2011 Dec;80(2):157-68 - PubMed
  28. Biochemistry. 2009 Mar 31;48(12):2777-87 - PubMed
  29. Photochem Photobiol. 1973 Oct;18(4):263-79 - PubMed
  30. Biochemistry. 1997 Feb 25;36(8):2227-36 - PubMed

Publication Types

Grant support