Display options
Share it on

Surg Neurol Int. 2012;3:S53-61. doi: 10.4103/2152-7806.91612. Epub 2012 Jan 14.

Pitfalls in precision stereotactic surgery.

Surgical neurology international

Ludvic Zrinzo

Affiliations

  1. Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom.

PMID: 22826812 PMCID: PMC3400482 DOI: 10.4103/2152-7806.91612

Abstract

Precision is the ultimate aim of stereotactic technique. Demands on stereotactic precision reach a pinnacle in stereotactic functional neurosurgery. Pitfalls are best avoided by possessing in-depth knowledge of the techniques employed and the equipment used. The engineering principles of arc-centered stereotactic frames maximize surgical precision at the target, irrespective of the surgical trajectory, and provide the greatest degree of surgical precision in current clinical practice. Stereotactic magnetic resonance imaging (MRI) provides a method of visualizing intracranial structures and fiducial markers on the same image without introducing significant errors during an image fusion process. Although image distortion may potentially limit the utility of stereotactic MRI, near-complete distortion correction can be reliably achieved with modern machines. Precision is dependent on minimizing errors at every step of the stereotactic procedure. These steps are considered in turn and include frame application, image acquisition, image manipulation, surgical planning of target and trajectory, patient positioning and the surgical procedure itself. Audit is essential to monitor and improve performance in clinical practice. The level of stereotactic precision is best analyzed by routine postoperative stereotactic MRI. This allows the stereotactic and anatomical location of the intervention to be compared with the anatomy and coordinates of the intended target, avoiding significant image fusion errors.

Keywords: Magnetic resonance imaging; precision; stereotactic

References

  1. Neurosurgery. 1985 Jul;17(1):12-8 - PubMed
  2. Neurosurgery. 2005 Mar;56(3):421-33; discussion 421-33 - PubMed
  3. Neurosurgery. 1994 Oct;35(4):696-703; discussion 703-4 - PubMed
  4. Acta Neurochir (Wien). 2002 May;144(5):445-51 - PubMed
  5. J Neurol Neurosurg Psychiatry. 2003 Dec;74(12):1631-7 - PubMed
  6. Stereotact Funct Neurosurg. 2009;87(2):88-93 - PubMed
  7. J Neurosurg. 2005 Sep;103(3):404-13 - PubMed
  8. J Image Guid Surg. 1995;1(3):151-7 - PubMed
  9. Magn Reson Med. 2005 Nov;54(5):1107-14 - PubMed
  10. Can J Neurol Sci. 2008 Nov;35(5):664-8 - PubMed
  11. J Neurol Neurosurg Psychiatry. 2011 Apr;82(4):358-63 - PubMed
  12. Acta Neurochir (Wien). 1992;116(2-4):164-70 - PubMed
  13. Stereotact Funct Neurosurg. 2008;86(1):44-53 - PubMed
  14. Stereotact Funct Neurosurg. 2003;80(1-4):96-101 - PubMed
  15. J Neurol Neurosurg Psychiatry. 1985 Jan;48(1):14-8 - PubMed
  16. J Neurosurg. 1998 Jun;88(6):1027-43 - PubMed
  17. J Neurosurg. 2009 Jun;110(6):1283-90 - PubMed
  18. IEEE Trans Med Imaging. 1992;11(3):319-29 - PubMed
  19. Br J Neurosurg. 2009 Aug;23(4):446-8 - PubMed
  20. Neurosurgery. 1992 Mar;30(3):402-6; discussion 406-7 - PubMed
  21. Neurosurgery. 2001 May;48(5):1092-8; discussion 1098-9 - PubMed
  22. Phys Med Biol. 2005 Apr 7;50(7):1343-61 - PubMed
  23. Stereotact Funct Neurosurg. 2007;85(5):235-42 - PubMed
  24. Stereotact Funct Neurosurg. 2001;77(1-4):87-90 - PubMed
  25. Int J Comput Assist Radiol Surg. 2010 May;5(3):221-8 - PubMed
  26. Minim Invasive Neurosurg. 2000 Mar;43(1):1-3 - PubMed
  27. Clin Orthop Relat Res. 2007 Oct;463:3-6 - PubMed
  28. Acta Neurochir (Wien). 2010 Dec;152(12):2047-52 - PubMed
  29. World Neurosurg. 2011 Jul-Aug;76(1-2):164-72; discussion 69-73 - PubMed
  30. Arch Neurol. 1965 Nov;13(5):477-86 - PubMed
  31. Ann Surg. 1918 Jul;68(1):5-11 - PubMed
  32. Neurology. 2006 Jun 27;66(12):1830-6 - PubMed
  33. Stereotact Funct Neurosurg. 2008;86(1):37-43 - PubMed
  34. J Appl Clin Med Phys. 2001 Winter;2(1):42-50 - PubMed
  35. J Neurosurg. 1991 Sep;75(3):486-8 - PubMed
  36. J Neurosurg. 1995 Aug;83(2):271-6 - PubMed
  37. Neurosurgery. 2010 Sep;67(3 Suppl Operative):ons213-21; discussion ons221 - PubMed
  38. J Neurosurg. 2007 Nov;107(5):989-97 - PubMed
  39. J Neurosurg. 2007 Nov;107(5):983-8 - PubMed
  40. J Neurosurg. 2007 Jul;107(1 Suppl):1-4 - PubMed
  41. J Neurosurg. 2005 Mar;102(3):565-70 - PubMed
  42. Mov Disord. 2010 Feb 15;25(3):289-99 - PubMed
  43. Neurosurgery. 1993 Mar;32(3):473-4; discussion 474-5 - PubMed
  44. J Neurol Neurosurg Psychiatry. 2005 Aug;76(8):1161-3 - PubMed
  45. J Neurosurg. 2002 Jul;97(1):119-28 - PubMed
  46. Stereotact Funct Neurosurg. 2009;87(2):94-100 - PubMed
  47. Phys Med Biol. 2005 Jun 7;50(11):2651-61 - PubMed
  48. Mov Disord. 2008 Apr 30;23(6):908-11 - PubMed
  49. J Neurosurg. 2012 Jan;116(1):84-94 - PubMed
  50. J Neurosurg. 2009 Feb;110(2):201-7 - PubMed
  51. Stereotact Funct Neurosurg. 2009;87(1):25-30 - PubMed
  52. Stereotact Funct Neurosurg. 2009;87(4):205-10 - PubMed
  53. J Neurosurg. 2010 Mar;112(3):479-90 - PubMed
  54. Mov Disord. 2002;17 Suppl 3:S130-4 - PubMed
  55. IEEE Trans Med Imaging. 1993;12(2):251-9 - PubMed
  56. J Neurosurg. 2002 Sep;97(3):591-7 - PubMed
  57. J Neurosurg. 1989 Feb;70(2):195-200 - PubMed
  58. J Neurol Neurosurg Psychiatry. 2011 Apr;82(4):356-7 - PubMed
  59. Surg Neurol. 1987 Aug;28(2):100-4 - PubMed
  60. Neurosurgery. 2003 Mar;52(3):610-8; discussion 617-8 - PubMed
  61. J Neurosurg. 1989 Apr;70(4):649-52 - PubMed
  62. Neurochirurgia (Stuttg). 1962 Apr;5:1-18 - PubMed
  63. Neurosurgery. 2001 Feb;48(2):263-71; discussion 271-3 - PubMed
  64. Science. 1947 Oct 10;106(2754):349-50 - PubMed
  65. Neurosurgery. 2007 Nov;61(5 Suppl 2):358-65; discussion 365-6 - PubMed
  66. Surg Neurol. 2004 Sep;62(3):216-25; discussion 225-6 - PubMed
  67. Neurosurgery. 2010 Dec;67(2 Suppl Operative):437-47 - PubMed
  68. Stereotact Funct Neurosurg. 2011;89(2):76-82 - PubMed
  69. J Magn Reson Imaging. 1999 Jun;9(6):821-31 - PubMed

Publication Types