Display options
Share it on

Nature. 2015 Feb 12;518(7538):216-8. doi: 10.1038/nature14159. Epub 2015 Jan 26.

Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years.

Nature

Rita Schulz, Martin Hilchenbach, Yves Langevin, Jochen Kissel, Johan Silen, Christelle Briois, Cecile Engrand, Klaus Hornung, Donia Baklouti, Anaïs Bardyn, Hervé Cottin, Henning Fischer, Nicolas Fray, Marie Godard, Harry Lehto, Léna Le Roy, Sihane Merouane, François-Régis Orthous-Daunay, John Paquette, Jouni Rynö, Sandra Siljeström, Oliver Stenzel, Laurent Thirkell, Kurt Varmuza, Boris Zaprudin

Affiliations

  1. European Space Agency, Scientific Support Office, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands.
  2. Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany.
  3. Institut d'Astrophysique Spatiale, CNRS/Université Paris Sud, Bâtiment 121, 91405 Orsay, France.
  4. Finnish Meteorological Institute, Observation services, Erik Palménin aukio 1, FI-00560 Helsinki, Finland.
  5. Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS/Université d'Orléans, 45071 Orléans, France.
  6. Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3-Université Paris Sud-UMR8609, Batiment 104, 91405 Orsay campus, France.
  7. Universität der Bundeswehr, LRT-7, Werner Heisenberg Weg 39, 85577 Neubiberg, Germany.
  8. 1] Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS/Université d'Orléans, 45071 Orléans, France [2] Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 94000 Créteil, France.
  9. Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 94000 Créteil, France.
  10. University of Turku, Department of Physics and Astronomy, Tuorla Observatory Väisäläntie 20, 21500 Piikkiö, Finland.
  11. Center for Space and Habitability (CSH), University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.
  12. Université Grenoble Alpes/CNRS, Institut de Planétologie et d'Astrophysique de Grenoble, 414 Rue de la Piscine, Domaine Universitaire, 38000 Grenoble, France.
  13. Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Box 857, 50115 Borås, Sweden.
  14. Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, Wiedner Hauptstrasse 7, 1040 Wien, Austria.

PMID: 25624103 DOI: 10.1038/nature14159

Abstract

Comets are composed of dust and frozen gases. The ices are mixed with the refractory material either as an icy conglomerate, or as an aggregate of pre-solar grains (grains that existed prior to the formation of the Solar System), mantled by an ice layer. The presence of water-ice grains in periodic comets is now well established. Modelling of infrared spectra obtained about ten kilometres from the nucleus of comet Hartley 2 suggests that larger dust particles are being physically decoupled from fine-grained water-ice particles that may be aggregates, which supports the icy-conglomerate model. It is known that comets build up crusts of dust that are subsequently shed as they approach perihelion. Micrometre-sized interplanetary dust particles collected in the Earth's stratosphere and certain micrometeorites are assumed to be of cometary origin. Here we report that grains collected from the Jupiter-family comet 67P/Churyumov-Gerasimenko come from a dusty crust that quenches the material outflow activity at the comet surface. The larger grains (exceeding 50 micrometres across) are fluffy (with porosity over 50 per cent), and many shattered when collected on the target plate, suggesting that they are agglomerates of entities in the size range of interplanetary dust particles. Their surfaces are generally rich in sodium, which explains the high sodium abundance in cometary meteoroids. The particles collected to date therefore probably represent parent material of interplanetary dust particles. This argues against comet dust being composed of a silicate core mantled by organic refractory material and then by a mixture of water-dominated ices. At its previous recurrence (orbital period 6.5 years), the comet's dust production doubled when it was between 2.7 and 2.5 astronomical units from the Sun, indicating that this was when the nucleus shed its mantle. Once the mantle is shed, unprocessed material starts to supply the developing coma, radically changing its dust component, which then also contains icy grains, as detected during encounters with other comets closer to the Sun.

References

  1. Science. 2011 Jun 17;332(6036):1396-400 - PubMed

Publication Types

Grant support