Display options
Share it on

J Mol Psychiatry. 2013 Nov 04;1(1):19. doi: 10.1186/2049-9256-1-19. eCollection 2013.

Olanzapine induced DNA methylation changes support the dopamine hypothesis of psychosis.

Journal of molecular psychiatry

Melkaye G Melka, Christina A Castellani, Benjamin I Laufer, Raj N Rajakumar, Richard O'Reilly, Shiva M Singh

Affiliations

  1. Department of Biology, Molecular Genetics Unit, Western Science Centre, The University of Western Ontario, London, Ontario N6A 5B7 Canada.
  2. Department of Psychiatry, The University of Western Ontario, London, Ontario N6A 5B7 Canada.

PMID: 25408910 PMCID: PMC4223857 DOI: 10.1186/2049-9256-1-19

Abstract

BACKGROUND: The dopamine (DA) hypothesis of schizophrenia proposes the mental illness is caused by excessive transmission of dopamine in selected brain regions. Multiple lines of evidence, including blockage of dopamine receptors by antipsychotic drugs that are used to treat schizophrenia, support the hypothesis. However, the dopamine D2 receptor (DRD2) blockade cannot explain some important aspects of the therapeutic effect of antipsychotic drugs. In this study, we hypothesized that antipsychotic drugs could affect the transcription of genes in the DA pathway by altering their epigenetic profile.

METHODS: To test this hypothesis, we examined the effect of olanzapine, a commonly used atypical antipsychotic drug, on the DNA methylation status of genes from DA neurotransmission in the brain and liver of rats. Genomic DNA isolated from hippocampus, cerebellum, and liver of olanzapine treated (n = 2) and control (n = 2) rats were analyzed using rat specific methylation arrays.

RESULTS: Our results show that olanzapine causes methylation changes in genes encoding for DA receptors (dopamine D1 receptor, dopamine D2 receptor and dopamine D5 receptor), a DA transporter (solute carrier family 18 member 2), a DA synthesis (differential display clone 8), and a DA metabolism (catechol-O-methyltransferase). We assessed a total of 40 genes in the DA pathway and found 19 to be differentially methylated between olanzapine treated and control rats. Most (17/19) genes showed an increase in methylation, in their promoter regions with in silico analysis strongly indicating a functional potential to suppress transcription in the brain.

CONCLUSION: Our results suggest that chronic olanzapine may reduce DA activity by altering gene methylation. It may also explain the delayed therapeutic effect of antipsychotics, which occurs despite rapid dopamine blockade. Furthermore, given the common nature of epigenetic variation, this lends insight into the differential therapeutic response of psychotic patients who display adequate blockage of dopamine receptors.

Keywords: DNA methylation; Dopamine; Epigenetics; Olanzapine; Psychosis

References

  1. Brain Cogn. 2012 Nov;80(2):282-9 - PubMed
  2. Neuroreport. 1999 Apr 26;10(6):1249-55 - PubMed
  3. BMC Genomics. 2012 Oct 05;13:532 - PubMed
  4. J Hist Neurosci. 2013;22(1):62-78 - PubMed
  5. Eur Neuropsychopharmacol. 2014 Mar;24(3):459-68 - PubMed
  6. Neural Plast. 2012;2012:854285 - PubMed
  7. Can J Psychiatry. 2002 Feb;47(1):27-38 - PubMed
  8. Schizophr Bull. 2013 Jan;39(1):11-6 - PubMed
  9. Int J Mol Sci. 2012;13(8):10143-53 - PubMed
  10. Mol Psychiatry. 2013 Jun;18(6):713-20 - PubMed
  11. Biol Psychiatry. 2004 May 15;55(10):965-70 - PubMed
  12. Clin Schizophr Relat Psychoses. 2010 Apr;4(1):56-73 - PubMed
  13. Schizophr Res. 2012 Sep;140(1-3):214-20 - PubMed
  14. Neuropsychopharmacology. 2002 Dec;27(6):930-8 - PubMed
  15. Curr Med Res Opin. 2003;19(6):473-80 - PubMed
  16. J Clin Invest. 2007 Mar;117(3):672-82 - PubMed
  17. Neuropsychopharmacology. 1992 Dec;7(4):261-84 - PubMed
  18. Nucleic Acids Res. 2008 Jan;36(Database issue):D83-7 - PubMed
  19. Eur Neuropsychopharmacol. 2011 Dec;21(12 ):861-6 - PubMed
  20. Arch Gen Psychiatry. 2009 Oct;66(10):1045-54 - PubMed
  21. Microbiol Rev. 1991 Sep;55(3):451-8 - PubMed
  22. Croat Med J. 2009 Aug;50(4):361-9 - PubMed
  23. J Neurosci. 2003 Sep 17;23(24):8506-12 - PubMed
  24. Mol Psychiatry. 2000 Jan;5(1):39-48 - PubMed
  25. Bioinformation. 2007 Apr 10;1(10):420-2 - PubMed
  26. Brain. 2009 Feb;132(Pt 2):417-25 - PubMed
  27. Neuropharmacology. 2012 Mar;62(3):1342-8 - PubMed
  28. Mol Psychiatry. 2007 Sep;12 (9):833-41 - PubMed
  29. Mol Psychiatry. 2010 Oct;15(10 ):1016-22 - PubMed
  30. Clin Genet. 2003 Dec;64(6):451-60 - PubMed
  31. Harv Rev Psychiatry. 2007 Sep-Oct;15(5):245-58 - PubMed
  32. J Psychopharmacol. 2012 Sep;26(9):1271-9 - PubMed
  33. Curr Opin Mol Ther. 2003 Dec;5(6):642-9 - PubMed
  34. Biochim Biophys Acta. 2009 Sep;1790(9):869-77 - PubMed
  35. Am J Med Genet B Neuropsychiatr Genet. 2013 Apr;162B(3):273-82 - PubMed
  36. Lancet. 2009 Aug 22;374(9690):635-45 - PubMed
  37. Cereb Cortex. 2014 Apr;24(4):845-58 - PubMed
  38. J Child Psychol Psychiatry. 2008 Sep;49(9):950-7 - PubMed
  39. Neuropsychopharmacology. 2000 Nov;23(5):595-8 - PubMed
  40. J Clin Psychopharmacol. 2012 Aug;32(4):449-57 - PubMed

Publication Types