Display options
Share it on

Evodevo. 2014 Nov 03;5(1):40. doi: 10.1186/2041-9139-5-40. eCollection 2014.

Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr.

EvoDevo

Ehsan Pashay Ahi, Kalina Hristova Kapralova, Arnar Pálsson, Valerie Helene Maier, Jóhannes Gudbrandsson, Sigurdur S Snorrason, Zophonías O Jónsson, Sigrídur Rut Franzdóttir

Affiliations

  1. Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
  2. Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland.

PMID: 25419450 PMCID: PMC4240837 DOI: 10.1186/2041-9139-5-40

Abstract

BACKGROUND: Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic).

RESULTS: Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs.

CONCLUSION: Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.

Keywords: Arctic charr; Coexpression; Craniofacial development; Divergent evolution; Gene network; Morphogenesis; Salvelinus alpinus

References

  1. Dis Model Mech. 2012 Mar;5(2):177-90 - PubMed
  2. Nat Commun. 2014 Apr 03;5:3629 - PubMed
  3. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83 - PubMed
  4. Mol Cell Endocrinol. 2010 Jul 29;323(2):232-8 - PubMed
  5. J Mol Endocrinol. 2008 Sep;41(3):165-75 - PubMed
  6. Brain Res. 2000 May 19;865(1):12-6 - PubMed
  7. Nat Rev Genet. 2013 Nov;14(11):751-64 - PubMed
  8. Crit Rev Oral Biol Med. 2003;14(2):78-88 - PubMed
  9. Development. 2009 Feb;136(3):427-36 - PubMed
  10. Arthritis Rheum. 2008 Jun;58(6):1674-86 - PubMed
  11. Mol Endocrinol. 2000 Sep;14(9):1462-71 - PubMed
  12. Neurosci Lett. 2003 Mar 13;339(1):62-6 - PubMed
  13. Arthritis Rheum. 1999 Feb;42(2):285-90 - PubMed
  14. FASEB J. 1994 Feb;8(2):163-73 - PubMed
  15. Nature. 1995 Sep 7;377(6544):68-71 - PubMed
  16. J Biol Chem. 2009 Apr 24;284(17):11728-37 - PubMed
  17. Mol Cell Biol. 1993 Apr;13(4):2031-40 - PubMed
  18. BMC Evol Biol. 2010 Jan 06;10:4 - PubMed
  19. Nat Rev Immunol. 2009 Jan;9(1):62-70 - PubMed
  20. J Biol Chem. 1997 Nov 28;272(48):30306-13 - PubMed
  21. PLoS One. 2013;8(1):e53553 - PubMed
  22. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W253-8 - PubMed
  23. Pac Symp Biocomput. 2001;:127-38 - PubMed
  24. J Cell Mol Med. 2012 Jun;16(6):1245-59 - PubMed
  25. Birth Defects Res A Clin Mol Teratol. 2007 Jul;79(7):524-32 - PubMed
  26. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18587-91 - PubMed
  27. Matrix Biol. 2008 Jul;27(6):561-72 - PubMed
  28. J Endocrinol. 2005 Aug;186(2):251-71 - PubMed
  29. J Urol. 2001 Dec;166(6):2495-9 - PubMed
  30. J Biol Chem. 2010 Sep 3;285(36):28141-55 - PubMed
  31. PLoS One. 2013;8(3):e58490 - PubMed
  32. Heredity (Edinb). 2011 Mar;106(3):472-87 - PubMed
  33. Evolution. 2012 Jan;66(1):1-17 - PubMed
  34. Nucleic Acids Res. 2011 Jan;39(Database issue):D1016-22 - PubMed
  35. Mol Endocrinol. 1989 Dec;3(12):2079-85 - PubMed
  36. Hum Reprod Update. 2000 May-Jun;6(3):225-36 - PubMed
  37. Dis Aquat Organ. 2013 Sep 24;106(1):57-68 - PubMed
  38. Dev Genes Evol. 2008 Jan;218(1):1-14 - PubMed
  39. J Biol Chem. 2009 Sep 18;284(38):25593-601 - PubMed
  40. FASEB J. 2002 Feb;16(2):177-84 - PubMed
  41. Development. 2005 Mar;132(5):851-61 - PubMed
  42. Matrix Biol. 1998 Apr;17(1):1-19 - PubMed
  43. J Biol Chem. 2008 Jan 25;283(4):1936-45 - PubMed
  44. Gene. 2006 May 10;372:208-18 - PubMed
  45. Mol Biol Evol. 2013 Jun;30(6):1384-96 - PubMed
  46. J Biol Chem. 2005 Dec 30;280(52):43264-71 - PubMed
  47. PLoS One. 2013 Jul 24;8(7):e69402 - PubMed
  48. Mol Cell Biochem. 2012 Jan;360(1-2):321-8 - PubMed
  49. PLoS Genet. 2013 Apr;9(4):e1003476 - PubMed
  50. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13453-8 - PubMed
  51. Endocrinology. 1999 Jan;140(1):228-32 - PubMed
  52. J Bone Miner Res. 2000 Nov;15(11):2154-68 - PubMed
  53. BMC Evol Biol. 2007 Jan 30;7:10 - PubMed
  54. Endocrinology. 1994 Dec;135(6):2423-31 - PubMed
  55. Mol Cell Endocrinol. 2007 Sep 15;275(1-2):13-29 - PubMed
  56. Mol Ecol Resour. 2011 Mar;11(2):353-7 - PubMed
  57. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  58. J Evol Biol. 2011 Aug;24(8):1640-52 - PubMed
  59. PLoS One. 2013 Jun 13;8(6):e66389 - PubMed
  60. Toxicol Sci. 2008 Apr;102(2):413-24 - PubMed
  61. Endocrinology. 2001 Apr;142(4):1525-33 - PubMed
  62. Aquat Toxicol. 2012 Sep 15;120-121:45-53 - PubMed
  63. Evolution. 2002 Oct;56(10):1909-20 - PubMed
  64. Comp Biochem Physiol B Biochem Mol Biol. 2006 Nov-Dec;145(3-4):371-83 - PubMed
  65. Evolution. 2001 Mar;55(3):573-86 - PubMed
  66. Hum Mol Genet. 2007 May 1;16(9):1113-23 - PubMed
  67. Development. 2007 Sep;134(18):3283-95 - PubMed
  68. Nucleic Acids Res. 2013 Jan;41(Database issue):D64-9 - PubMed
  69. Trends Genet. 2003 Aug;19(8):458-66 - PubMed
  70. Heredity (Edinb). 2006 Sep;97(3):211-21 - PubMed
  71. Heredity (Edinb). 2011 Jul;107(1):1-15 - PubMed
  72. Toxicol Sci. 2007 Nov;100(1):168-79 - PubMed
  73. J Steroid Biochem Mol Biol. 1999 Jul-Aug;70(1-3):15-25 - PubMed
  74. J Cell Sci. 2004 Dec 1;117(Pt 25):5965-73 - PubMed
  75. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W259-64 - PubMed
  76. Endocrinology. 2005 May;146(5):2415-23 - PubMed
  77. Genome Res. 2009 Jun;19(6):1107-16 - PubMed
  78. Methods. 2010 Apr;50(4):323-35 - PubMed
  79. Matrix Biol. 2002 Jun;21(4):361-7 - PubMed
  80. Evol Dev. 2010 May-Jun;12(3):246-57 - PubMed
  81. FEBS Lett. 2004 Sep 10;574(1-3):167-70 - PubMed
  82. Nucleic Acids Res. 2011 Jan;39(Database issue):D822-9 - PubMed
  83. Trends Ecol Evol. 1995 Sep;10(9):366-70 - PubMed
  84. Curr Opin Cell Biol. 2004 Oct;16(5):558-64 - PubMed
  85. Nat Protoc. 2009;4(1):44-57 - PubMed
  86. Nucleic Acids Res. 2003 Jan 1;31(1):374-8 - PubMed
  87. Mol Ecol. 2011 Aug;20(15):3167-84 - PubMed
  88. Evodevo. 2014 Feb 05;5(1):8 - PubMed
  89. Biotech Histochem. 2007 Feb;82(1):23-8 - PubMed
  90. J Biol Chem. 2001 May 25;276(21):18007-17 - PubMed
  91. Nature. 1996 Feb 8;379(6565):534-7 - PubMed
  92. Science. 2005 Aug 5;309(5736):938-40 - PubMed
  93. PLoS One. 2014 Aug 29;9(8):e106084 - PubMed
  94. Crit Rev Oral Biol Med. 2002;13(4):308-22 - PubMed
  95. Proc Natl Acad Sci U S A. 2005 May 17;102(20):7203-8 - PubMed
  96. Curr Top Dev Biol. 2009;86:191-221 - PubMed
  97. Science. 2013 Oct 25;342(6157):1241006 - PubMed

Publication Types