Display options
Share it on

Physiol Rep. 2014 Nov 26;2(11). doi: 10.14814/phy2.12223. Print 2014 Nov 01.

The 24 h pattern of arterial pressure in mice is determined mainly by heart rate-driven variation in cardiac output.

Physiological reports

Theodore W Kurtz, Heidi L Lujan, Stephen E DiCarlo

Affiliations

  1. Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California.
  2. Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.

PMID: 25428952 PMCID: PMC4255824 DOI: 10.14814/phy2.12223

Abstract

Few studies have systematically investigated whether daily patterns of arterial blood pressure over 24 h are mediated by changes in cardiac output, peripheral resistance, or both. Understanding the hemodynamic mechanisms that determine the 24 h patterns of blood pressure may lead to a better understanding of how such patterns become disturbed in hypertension and influence risk for cardiovascular events. In conscious, unrestrained C57BL/6J mice, we investigated whether the 24 h pattern of arterial blood pressure is determined by variation in cardiac output, systemic vascular resistance, or both and also whether variations in cardiac output are mediated by variations in heart rate and or stroke volume. As expected, arterial pressure and locomotor activity were significantly (P < 0.05) higher during the nighttime period compared with the daytime period when mice are typically sleeping (+12.5 ± 1.0 mmHg, [13%] and +7.7 ± 1.3 activity counts, [254%], respectively). The higher arterial pressure during the nighttime period was mediated by higher cardiac output (+2.6 ± 0.3 mL/min, [26%], P < 0.05) in association with lower peripheral resistance (-1.5 ± 0.3 mmHg/mL/min, [-13%] P < 0.05). The increased cardiac output during the nighttime was mainly mediated by increased heart rate (+80.0 ± 16.5 beats/min, [18%] P < 0.05), as stroke volume increased minimally at night (+1.6 ± 0.5 μL per beat, [6%] P < 0.05). These results indicate that in C57BL/6J mice, the 24 h pattern of blood pressure is hemodynamically mediated primarily by the 24 h pattern of cardiac output which is almost entirely determined by the 24 h pattern of heart rate. These findings suggest that the differences in blood pressure between nighttime and daytime are mainly driven by differences in heart rate which are strongly correlated with differences in locomotor activity.

© 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Keywords: 24‐h variability; hemodynamics

References

  1. Clin Sci (Lond). 1979 Dec;57 Suppl 5:291s-294s - PubMed
  2. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16523-8 - PubMed
  3. Sleep. 2011 Feb 01;34(2):213-8 - PubMed
  4. Physiol Rep. 2014 Jun 27;2(6):null - PubMed
  5. Am J Physiol. 1987 Nov;253(5 Pt 2):R779-85 - PubMed
  6. Curr Hypertens Rep. 2006 Aug;8(4):330-7 - PubMed
  7. J Chronic Dis. 1987;40(7):671-81 - PubMed
  8. N Engl J Med. 1991 Oct 3;325(14):986-90 - PubMed
  9. Am J Physiol Heart Circ Physiol. 2014 Apr 15;306(8):H1213-21 - PubMed
  10. Lancet. 1988 Oct 1;2(8614):755-9 - PubMed
  11. J Appl Physiol. 1974 Oct;37(4):626-9 - PubMed
  12. Br J Pharmacol. 2014 Nov;171(22):5076-92 - PubMed
  13. N Engl J Med. 1993 Feb 4;328(5):347-9 - PubMed
  14. Hypertension. 1995 Jul;26(1):55-9 - PubMed
  15. Am J Physiol Regul Integr Comp Physiol. 2010 Mar;298(3):R627-34 - PubMed
  16. Circ Res. 1983 Jul;53(1):96-104 - PubMed
  17. Br J Pharmacol. 2013 Aug;169(7):1510-24 - PubMed
  18. Eur J Appl Physiol. 2014 Mar;114(3):521-9 - PubMed
  19. Am J Physiol Regul Integr Comp Physiol. 2012 Jun 15;302(12):R1384-400 - PubMed
  20. Am J Physiol Regul Integr Comp Physiol. 2004 Aug;287(2):R391-6 - PubMed
  21. Am J Physiol Regul Integr Comp Physiol. 2013 Feb 15;304(4):R286-95 - PubMed
  22. J Appl Physiol (1985). 2007 Oct;103(4):1332-8 - PubMed
  23. J Sleep Res. 2003 Sep;12(3):213-21 - PubMed
  24. Curr Hypertens Rep. 2012 Jun;14(3):219-27 - PubMed
  25. Am J Physiol. 1987 Dec;253(6 Pt 2):H1335-41 - PubMed
  26. Curr Hypertens Rep. 2014 Feb;16(2):412 - PubMed
  27. J Hypertens. 2009 Nov;27(11):2265-70 - PubMed
  28. J Hypertens. 2002 May;20(5):865-70 - PubMed
  29. Biol Psychol. 2012 Sep;91(1):22-7 - PubMed
  30. Brain Res. 1977 Aug 5;131(1):129-45 - PubMed
  31. Clin Sci (Lond). 1980 Jan;58(1):115-7 - PubMed
  32. Hypertension. 2010 Nov;56(5):765-73 - PubMed
  33. N Engl J Med. 1985 Nov 21;313(21):1315-22 - PubMed
  34. Chronobiol Int. 2012 Feb;29(1):82-6 - PubMed
  35. Aviat Space Environ Med. 1976 Oct;47(10):1046-51 - PubMed
  36. Am J Cardiol. 1988 Sep 15;62(9):635-7 - PubMed
  37. Physiol Behav. 1990 Sep;48(3):485-7 - PubMed
  38. PLoS One. 2010 Mar 22;5(3):e9783 - PubMed
  39. Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1013-9 - PubMed
  40. J Physiol. 2003 May 15;549(Pt 1):313-25 - PubMed
  41. J Hum Hypertens. 2014 Oct;28(10):567-74 - PubMed
  42. Circ Res. 2011 Apr 15;108(8):980-4 - PubMed
  43. Clin Exp Pharmacol Physiol. 2006 Nov;33(11):1007-15 - PubMed
  44. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3450-5 - PubMed
  45. Stroke. 1989 Apr;20(4):473-6 - PubMed
  46. Cardiovasc Res. 1969 Oct;3(4):476-85 - PubMed
  47. Am J Physiol Regul Integr Comp Physiol. 2012 Jan 1;302(1):R68-74 - PubMed
  48. J Appl Physiol. 1967 May;22(5):867-73 - PubMed
  49. Hypertension. 2009 Feb;53(2):251-5 - PubMed
  50. Sleep. 2010 Mar;33(3):355-61 - PubMed
  51. Lancet. 1978 Apr 15;1(8068):795-7 - PubMed
  52. Lancet. 1988 Aug 13;2(8607):397 - PubMed

Publication Types