Display options
Share it on

Front Physiol. 2014 Nov 12;5:434. doi: 10.3389/fphys.2014.00434. eCollection 2014.

Carotid body potentiation during chronic intermittent hypoxia: implication for hypertension.

Frontiers in physiology

Rodrigo Del Rio, Esteban A Moya, Rodrigo Iturriaga

Affiliations

  1. Laboratorio de Neurobiología, Departamento Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile Santiago, Chile.
  2. Laboratorio de Neurobiología, Departamento Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.

PMID: 25429271 PMCID: PMC4228839 DOI: 10.3389/fphys.2014.00434

Abstract

Autonomic dysfunction is involved in the development of hypertension in humans with obstructive sleep apnea, and animals exposed to chronic intermittent hypoxia (CIH). It has been proposed that a crucial step in the development of the hypertension is the potentiation of the carotid body (CB) chemosensory responses to hypoxia, but the temporal progression of the CB chemosensory, autonomic and hypertensive changes induced by CIH are not known. We tested the hypothesis that CB potentiation precedes the autonomic imbalance and the hypertension in rats exposed to CIH. Thus, we studied the changes in CB chemosensory and ventilatory responsiveness to hypoxia, the spontaneous baroreflex sensitivity (BRS), heart rate variability (HRV) and arterial blood pressure in pentobarbital anesthetized rats exposed to CIH for 7, 14, and 21 days. After 7 days of CIH, CB chemosensory and ventilatory responses to hypoxia were enhanced, while BRS was significantly reduced by 2-fold in CIH-rats compared to sham-rats. These alterations persisted until 21 days of CIH. After 14 days, CIH shifted the HRV power spectra suggesting a predominance of sympathetic over parasympathetic tone. In contrast, hypertension was found after 21 days of CIH. Concomitant changes between the gain of spectral HRV, BRS, and ventilatory hypoxic chemoreflex showed that the CIH-induced BRS attenuation preceded the HRV changes. CIH induced a simultaneous decrease of the BRS gain along with an increase of the hypoxic ventilatory gain. Present results show that CIH-induced persistent hypertension was preceded by early changes in CB chemosensory control of cardiorespiratory and autonomic function.

Keywords: autonomic imbalance; carotid body; hypertension; intermittent hypoxia

References

  1. Circulation. 1999 Mar 9;99(9):1183-9 - PubMed
  2. J Hypertens. 2000 Jan;18(1):7-19 - PubMed
  3. Respir Physiol. 2000 Jul;121(2-3):173-84 - PubMed
  4. Med Hypotheses. 2001 Jan;56(1):17-9 - PubMed
  5. J Appl Physiol (1985). 2001 Jun;90(6):2466-75 - PubMed
  6. J Appl Physiol. 1975 Sep;39(3):411-6 - PubMed
  7. Am J Respir Crit Care Med. 2002 Aug 1;166(3):279-86 - PubMed
  8. Am J Physiol. 1976 Jan;230(1):19-24 - PubMed
  9. Sleep Med Rev. 2003 Feb;7(1):35-51 - PubMed
  10. J Appl Physiol (1985). 2003 Oct;95(4):1499-508 - PubMed
  11. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10073-8 - PubMed
  12. Am J Physiol Regul Integr Comp Physiol. 2004 Jan;286(1):R226-31 - PubMed
  13. J Appl Physiol (1985). 2004 Mar;96(3):1236-42; discussion 1196 - PubMed
  14. J Physiol. 2004 Oct 15;560(Pt 2):577-86 - PubMed
  15. Clin Exp Pharmacol Physiol. 2005 May-Jun;32(5-6):447-9 - PubMed
  16. J Appl Physiol (1985). 1992 May;72(5):1978-84 - PubMed
  17. J Am Coll Cardiol. 2006 Jan 17;47(2):362-7 - PubMed
  18. J Appl Physiol (1985). 2006 Jun;100(6):1974-82 - PubMed
  19. BMC Physiol. 2006 Jun 16;6:5 - PubMed
  20. J Physiol. 2006 Sep 15;575(Pt 3):961-70 - PubMed
  21. Exp Physiol. 2007 Jan;92(1):45-50 - PubMed
  22. Exp Physiol. 2007 Jan;92(1):21-6 - PubMed
  23. Exp Physiol. 2007 Jan;92(1):87-97 - PubMed
  24. Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H997-1006 - PubMed
  25. Am J Physiol Heart Circ Physiol. 2007 Nov;293(5):H2809-18 - PubMed
  26. Am J Respir Crit Care Med. 2008 Jan 15;177(2):227-35 - PubMed
  27. Am J Respir Crit Care Med. 2008 Feb 15;177(4):369-75 - PubMed
  28. J Physiol. 1991 Nov;443:457-68 - PubMed
  29. Neuroscience. 2008 May 15;153(3):709-20 - PubMed
  30. Am J Physiol Regul Integr Comp Physiol. 2008 Jul;295(1):R28-37 - PubMed
  31. Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H434-40 - PubMed
  32. Circulation. 2008 Sep 2;118(10):1080-111 - PubMed
  33. Prog Cardiovasc Dis. 2009 Mar-Apr;51(5):434-51 - PubMed
  34. Clin Exp Pharmacol Physiol. 2009 Dec;36(12):1197-204 - PubMed
  35. Exp Physiol. 2009 Sep;94(9):972-83 - PubMed
  36. Eur Respir J. 2010 Jul;36(1):143-50 - PubMed
  37. Physiol Rev. 2010 Jan;90(1):47-112 - PubMed
  38. Respir Physiol Neurobiol. 2010 Apr 15;171(1):36-45 - PubMed
  39. J Clin Invest. 1991 Jun;87(6):1953-7 - PubMed
  40. Am J Physiol Lung Cell Mol Physiol. 2011 Nov;301(5):L702-11 - PubMed
  41. Eur Respir J. 2012 Jun;39(6):1492-500 - PubMed
  42. Physiol Rev. 2012 Jul;92(3):967-1003 - PubMed
  43. Auton Neurosci. 2013 Jan;173(1-2):22-7 - PubMed
  44. Respir Physiol Neurobiol. 2013 Aug 15;188(2):143-51 - PubMed
  45. Hypertension. 1988 Dec;12(6):600-10 - PubMed
  46. J Physiol. 1972 Jun;223(2):525-48 - PubMed
  47. Chest. 1993 Jun;103(6):1763-8 - PubMed
  48. Eur Heart J. 1996 Mar;17(3):354-81 - PubMed
  49. Am J Physiol. 1996 Feb;270(2 Pt 2):H575-82 - PubMed
  50. Sleep. 1996 Jun;19(5):370-7 - PubMed
  51. Am J Respir Crit Care Med. 1996 Nov;154(5):1490-6 - PubMed
  52. Anesthesiology. 1997 Jun;86(6):1342-9 - PubMed
  53. Circulation. 1998 Mar 17;97(10):943-5 - PubMed
  54. Circulation. 1998 Sep 15;98(11):1071-7 - PubMed
  55. J Auton Nerv Syst. 1998 Aug 6;72(1):46-54 - PubMed
  56. J Appl Physiol (1985). 1999 Jan;86(1):298-305 - PubMed

Publication Types