Display options
Share it on

Biol Open. 2016 Sep 15;5(9):1343-50. doi: 10.1242/bio.019943.

Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters.

Biology open

Tess A Stanly, Marco Fritzsche, Suneale Banerji, Esther García, Jorge Bernardino de la Serna, David G Jackson, Christian Eggeling

Affiliations

  1. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
  2. Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
  3. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK Science & Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Harwell-Oxford Campus, Oxford OX11 0FA, UK.
  4. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK [email protected] [email protected].
  5. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK [email protected] [email protected].

PMID: 27464671 PMCID: PMC5051640 DOI: 10.1242/bio.019943

Abstract

Receptor clustering is known to trigger signalling events that contribute to critical changes in cellular functions. Faithful imaging of such clusters by means of fluorescence microscopy relies on the application of adequate cell fixation methods prior to immunolabelling in order to avoid artefactual redistribution by the antibodies themselves. Previous work has highlighted the inadequacy of fixation with paraformaldehyde (PFA) alone for efficient immobilisation of membrane-associated molecules, and the advantages of fixation with PFA in combination with glutaraldehyde (GA). Using fluorescence microscopy, we here highlight how inadequate fixation can lead to the formation of artefactual clustering of receptors in lymphatic endothelial cells, focussing on the transmembrane hyaluronan receptors LYVE-1 and CD44, and the homotypic adhesion molecule CD31, each of which displays their native diffuse surface distribution pattern only when visualised with the right fixation techniques, i.e. PFA/GA in combination. Fluorescence recovery after photobleaching (FRAP) confirms that the artefactual receptor clusters are indeed introduced by residual mobility. In contrast, we observed full immobilisation of membrane proteins in cells that were fixed and then subsequently permeabilised, irrespective of whether the fixative was PFA or PFA/GA in combination. Our study underlines the importance of choosing appropriate sample preparation protocols for preserving authentic receptor organisation in advanced fluorescence microscopy.

© 2016. Published by The Company of Biologists Ltd.

Keywords: FRAP; Fixation; Immunolabelling; LYVE-1; Membrane receptors; Receptor clustering; Super-resolution

Conflict of interest statement

The authors declare no competing or financial interests.

References

  1. Methods Mol Biol. 2010;588:iv-v - PubMed
  2. J Cell Sci. 1992 Apr;101 ( Pt 4):731-43 - PubMed
  3. J Cell Sci. 2005 Jul 15;118(Pt 14):3141-51 - PubMed
  4. Thromb Haemost. 1991 Dec 2;66(6):700-7 - PubMed
  5. Biophys J. 1996 Nov;71(5):2656-68 - PubMed
  6. Curr Opin Cell Biol. 1996 Aug;8(4):566-74 - PubMed
  7. Immunity. 2010 Feb 26;32(2):187-99 - PubMed
  8. Annu Rev Biophys Biomol Struct. 2005;34:351-78 - PubMed
  9. Nat Immunol. 2006 Aug;7(8):803-9 - PubMed
  10. Methods Mol Biol. 1999;115:45-55 - PubMed
  11. Nat Commun. 2014 Nov 20;5:5412 - PubMed
  12. Nat Methods. 2010 Nov;7(11):865-6 - PubMed
  13. Sci Signal. 2013 Jul 23;6(285):ra62 - PubMed
  14. J Cell Biol. 1963 Apr;17:19-58 - PubMed
  15. J Exp Biol. 1980 Dec;89:19-29 - PubMed
  16. J Biol Chem. 2001 Jun 1;276(22):19420-30 - PubMed
  17. Blood. 1998 May 15;91(10):3901-8 - PubMed
  18. J Cell Biol. 2014 May 26;205(4):591-606 - PubMed
  19. Sci Rep. 2015 Jan 21;5:7924 - PubMed
  20. J Biol Chem. 2012 Dec 14;287(51):43094-107 - PubMed
  21. Nat Protoc. 2015 May;10(5):660-80 - PubMed
  22. Integr Biol (Camb). 2013 Apr;5(4):659-68 - PubMed
  23. Methods Mol Biol. 1999;115:35-8 - PubMed
  24. Science. 1996 Apr 12;272(5259):263-7 - PubMed
  25. Essays Biochem. 2015;57:69-80 - PubMed
  26. J Phys Chem B. 2006 Jun 8;110(22):10910-8 - PubMed
  27. Immunol Rev. 2012 Nov;250(1):258-76 - PubMed
  28. Mol Biol Cell. 2013 Mar;24(6):757-67 - PubMed
  29. J Biol Chem. 2007 Nov 16;282(46):33671-80 - PubMed
  30. Histochem Cell Biol. 2005 Nov;124(5):445-52 - PubMed
  31. Cytometry. 1999 Apr 1;35(4):353-62 - PubMed
  32. Biophys Chem. 2003;100(1-3):519-34 - PubMed
  33. Biochim Biophys Acta. 2014 Feb;1838(2):546-56 - PubMed
  34. J Biol Chem. 2009 Feb 6;284(6):3935-45 - PubMed
  35. J Cell Biol. 1999 Feb 22;144(4):789-801 - PubMed
  36. Science. 2006 Apr 14;312(5771):217-24 - PubMed
  37. Science. 2010 Jan 1;327(5961):46-50 - PubMed
  38. Protein Expr Purif. 1998 Dec;14(3):371-81 - PubMed
  39. Nat Methods. 2012 Jan 30;9(2):152-8 - PubMed
  40. Nat Rev Mol Cell Biol. 2001 Jun;2(6):444-56 - PubMed
  41. Biophys J. 2014 Jan 21;106(2):343-53 - PubMed
  42. Sci Rep. 2015 Jun 12;5:11386 - PubMed
  43. J Cell Sci. 2003 Apr 15;116(Pt 8):1599-609 - PubMed
  44. J Biol Chem. 2016 Apr 8;291(15):8014-30 - PubMed

Publication Types

Grant support