Display options
Share it on

Metabolomics. 2016;12:125. doi: 10.1007/s11306-016-1064-z. Epub 2016 Jul 05.

Urinary antihypertensive drug metabolite screening using molecular networking coupled to high-resolution mass spectrometry fragmentation.

Metabolomics : Official journal of the Metabolomic Society

Justin J J van der Hooft, Sandosh Padmanabhan, Karl E V Burgess, Michael P Barrett

Affiliations

  1. Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
  2. Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
  3. Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK ; Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.

PMID: 27471437 PMCID: PMC4932139 DOI: 10.1007/s11306-016-1064-z

Abstract

INTRODUCTION: Mass spectrometry is the current technique of choice in studying drug metabolism. High-resolution mass spectrometry in combination with MS/MS gas-phase experiments has the potential to contribute to rapid advances in this field. However, the data emerging from such fragmentation spectral files pose challenges to downstream analysis, given their complexity and size.

OBJECTIVES: This study aims to detect and visualize antihypertensive drug metabolites in untargeted metabolomics experiments based on the spectral similarity of their fragmentation spectra. Furthermore, spectral clusters of endogenous metabolites were also examined.

METHODS: Here we apply a molecular networking approach to seek drugs and their metabolites, in fragmentation spectra from urine derived from a cohort of 26 patients on antihypertensive therapy. The mass spectrometry data was collected on a Thermo Q-Exactive coupled to pHILIC chromatography using data dependent analysis (DDA) MS/MS gas-phase experiments.

RESULTS: In total, 165 separate drug metabolites were found and structurally annotated (17 by spectral matching and 122 by classification based on a clustered fragmentation pattern). The clusters could be traced to 13 drugs including the known antihypertensives verapamil, losartan and amlodipine. The molecular networking approach also generated clusters of endogenous metabolites, including carnitine derivatives, and conjugates containing glutamine, glutamate and trigonelline.

CONCLUSIONS: The approach offers unprecedented capability in the untargeted identification of drugs and their metabolites at the population level and has great potential to contribute to understanding stratified responses to drugs where differences in drug metabolism may determine treatment outcome.

Keywords: Antihypertensive drugs; Drug adherence; Drug metabolism; Fragmentation; High-resolution mass spectrometry; Metabolomics; Urine

References

  1. Eur J Pharm Sci. 2008 Jan;33(1):91-9 - PubMed
  2. Anal Chem. 2014 Nov 4;86(21):10724-31 - PubMed
  3. Clin Pharmacol Ther. 1999 Mar;65(3):348-52 - PubMed
  4. Drug Metab Dispos. 2006 Oct;34(10):1722-33 - PubMed
  5. Anal Chim Acta. 2006 Jul 28;573-574:273-83 - PubMed
  6. Xenobiotica. 1988 Feb;18(2):245-54 - PubMed
  7. Drug Metab Dispos. 1998 May;26(5):408-17 - PubMed
  8. J Med Chem. 2003 Jun 5;46(12 ):2261-70 - PubMed
  9. Bioanalysis. 2011 Aug;3(15):1769-82 - PubMed
  10. Anal Chem. 2013 Mar 19;85(6):3401-8 - PubMed
  11. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1743-52 - PubMed
  12. Anal Chem. 2012 Aug 7;84(15):6429-37 - PubMed
  13. J Mass Spectrom. 2009 Feb;44(2):163-70 - PubMed
  14. Anal Chem. 2013 Jun 18;85(12):6033-40 - PubMed
  15. J Anal Toxicol. 2016 Jan-Feb;40(1):17-27 - PubMed
  16. J Chromatogr A. 2005 Mar 4;1067(1-2):55-72 - PubMed
  17. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12549-50 - PubMed
  18. JAMA. 2013 May 22;309(20):2105-6 - PubMed
  19. Mass Spectrom Rev. 2011 Jul-Aug;30(4):626-63 - PubMed
  20. Drug Metab Dispos. 1979 May-Jun;7(3):145-8 - PubMed
  21. Electrophoresis. 2016 Jan;37(1):86-110 - PubMed
  22. Ther Drug Monit. 2001 Aug;23 (4):369-73 - PubMed
  23. Front Bioeng Biotechnol. 2015 Mar 09;3:26 - PubMed
  24. Anal Chem. 2014 May 20;86(10):4767-74 - PubMed
  25. J Mass Spectrom. 2010 Jul;45(7):703-14 - PubMed
  26. Anal Chem. 2011 Nov 15;83(22):8703-10 - PubMed
  27. J Nat Prod. 2013 Sep 27;76(9):1686-99 - PubMed
  28. Bioanal Rev. 2010 Dec;2(1-4):23-60 - PubMed
  29. Anal Chem. 2013 Jun 4;85(11):5288-96 - PubMed
  30. Br J Clin Pharmacol. 1998 Aug;46(2):101-10 - PubMed
  31. Int J Mass Spectrom. 2015 Feb 1;377:719-717 - PubMed
  32. Clin Pharmacol Ther. 1995 Dec;58(6):641-9 - PubMed
  33. Metabolomics. 2007 Sep;3(3):211-221 - PubMed
  34. J Mass Spectrom. 2009 Jul;44(7):999-1016 - PubMed
  35. Anal Chem. 2015 Aug 4;87(15):7535-9 - PubMed
  36. Anal Bioanal Chem. 2007 Oct;389(4):1017-31 - PubMed

Publication Types

Grant support