Display options
Share it on

Front Immunol. 2016 Jul 14;7:263. doi: 10.3389/fimmu.2016.00263. eCollection 2016.

Porcine CD3(+)NKp46(+) Lymphocytes Have NK-Cell Characteristics and Are Present in Increased Frequencies in the Lungs of Influenza-Infected Animals.

Frontiers in immunology

Kerstin H Mair, Maria Stadler, Stephanie C Talker, Hilde Forberg, Anne K Storset, Andrea Müllebner, J Catharina Duvigneau, Sabine E Hammer, Armin Saalmüller, Wilhelm Gerner

Affiliations

  1. Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna , Vienna , Austria.
  2. Department of Laboratory Services, Norwegian Veterinary Institute , Oslo , Norway.
  3. Department of Food Safety and Infection Biology, Norwegian University of Life Sciences , Oslo , Norway.
  4. Department of Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna , Vienna , Austria.

PMID: 27471504 PMCID: PMC4943943 DOI: 10.3389/fimmu.2016.00263

Abstract

The CD3(-)NKp46(+) phenotype is frequently used for the identification of natural killer (NK) cells in various mammalian species. Recently, NKp46 expression was analyzed in more detail in swine. It could be shown that besides CD3(-)NKp46(+) lymphocytes, a small but distinct population of CD3(+)NKp46(+) cells exists. In this study, we report low frequencies of CD3(+)NKp46(+) lymphocytes in blood, lymph nodes, and spleen, but increased frequencies in non-lymphatic organs, like liver and lung. Phenotypic analyses showed that the majority of CD3(+)NKp46(+) cells coexpressed the CD8αβ heterodimer, while a minor subset expressed the TCR-γδ, which was associated with a CD8αα(+) phenotype. Despite these T-cell associated receptors, the majority of CD3(+)NKp46(+) lymphocytes displayed a NK-related phenotype (CD2(+)CD5(-)CD6(-)CD16(+)perforin(+)) and expressed mRNA of NKp30, NKp44, and NKG2D at similar levels as NK cells. Functional tests showed that CD3(+)NKp46(+) lymphocytes produced IFN-γ and proliferated upon cytokine stimulation to a similar extent as NK cells, but did not respond to the T-cell mitogen, ConA. Likewise, CD3(+)NKp46(+) cells killed K562 cells with an efficiency comparable to NK cells. Cross-linking of NKp46 and CD3 led to degranulation of CD3(+)NKp46(+) cells, indicating functional signaling pathways for both receptors. Additionally, influenza A(H1N1)pdm09-infected pigs had reduced frequencies of CD3(+)NKp46(+) lymphocytes in blood, but increased frequencies in the lung in the early phase of infection. Thus, CD3(+)NKp46(+) cells appear to be involved in the early phase of influenza infections. In summary, we describe a lymphocyte population in swine with a mixed phenotype of NK and T cells, with results so far indicating that this cell population functionally resembles NK cells.

Keywords: CD3; NK cells; NKp46; influenza; swine

References

  1. Vet Immunol Immunopathol. 2008 Jan 15;121(1-2):68-82 - PubMed
  2. EMBO J. 2014 Jun 17;33(12):1295-303 - PubMed
  3. J Exp Med. 2011 Feb 14;208(2):357-68 - PubMed
  4. Vet Immunol Immunopathol. 2008 Feb 15;121(3-4):251-9 - PubMed
  5. J Exp Med. 2005 Feb 21;201(4):555-66 - PubMed
  6. J Exp Med. 1997 Oct 6;186(7):1129-36 - PubMed
  7. Eur J Immunol. 2013 Apr;43(4):929-38 - PubMed
  8. J Immunol. 2014 Apr 15;192(8):3868-80 - PubMed
  9. J Immunol. 2012 Mar 15;188(6):2509-15 - PubMed
  10. J Immunol. 1992 Sep 15;149(6):1876-80 - PubMed
  11. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3384-9 - PubMed
  12. Vet Immunol Immunopathol. 2012 Oct 15;149(3-4):272-9 - PubMed
  13. Eur J Immunol. 1999 Mar;29(3):1014-20 - PubMed
  14. J Virol. 2010 Apr;84(8):3993-4001 - PubMed
  15. Leuk Res. 1979;3(6):363-70 - PubMed
  16. Vet Immunol Immunopathol. 1998 Jan 30;60(3-4):261-8 - PubMed
  17. Front Immunol. 2012 Nov 20;3:344 - PubMed
  18. Nature. 2001 Feb 22;409(6823):1055-60 - PubMed
  19. Dev Comp Immunol. 2008;32(8):1002-10 - PubMed
  20. Immunology. 1994 Apr;81(4):578-83 - PubMed
  21. Nat Immunol. 2015 Sep;16(9):927-32 - PubMed
  22. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10619-23 - PubMed
  23. J Exp Med. 2006 May 15;203(5):1343-55 - PubMed
  24. Dev Comp Immunol. 2012 Oct;38(2):321-31 - PubMed
  25. Curr Protoc Immunol. 2001 Nov;Chapter 5:Unit 5.3 - PubMed
  26. Virol J. 2012 Feb 16;9:45 - PubMed
  27. Eur J Immunol. 2012 May;42(5):1261-71 - PubMed
  28. J Immunol. 2008 Oct 1;181(7):4507-15 - PubMed
  29. Dev Comp Immunol. 2009 Mar;33(3):310-20 - PubMed
  30. Vet Res. 2011 Feb 23;42:37 - PubMed
  31. Vet Res. 2013 Mar 01;44:13 - PubMed
  32. Vet Res Commun. 2015 Mar;39(1):19-30 - PubMed
  33. Eur J Immunol. 1999 May;29(5):1656-66 - PubMed
  34. Immunology. 1996 Aug;88(4):577-85 - PubMed
  35. J Exp Med. 1998 Sep 7;188(5):953-60 - PubMed
  36. J Exp Med. 1992 Apr 1;175(4):1055-66 - PubMed
  37. J Invest Dermatol. 2011 Apr;131(4):969-76 - PubMed
  38. Immunol Today. 1996 Aug;17(8):352-4 - PubMed
  39. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18324-9 - PubMed
  40. J Leukoc Biol. 2004 Dec;76(6):1200-6 - PubMed
  41. Cytokine. 2012 Nov;60(2):400-9 - PubMed
  42. Immunology. 1996 Jun;88(2):238-46 - PubMed
  43. Nat Immunol. 2006 May;7(5):517-23 - PubMed
  44. Curr Opin Immunol. 2007 Jun;19(3):365-72 - PubMed
  45. Science. 2010 Jul 2;329(5987):85-9 - PubMed
  46. Med Microbiol Immunol. 2014 Oct;203(5):303-14 - PubMed
  47. J Clin Invest. 2011 Apr;121(4):1456-70 - PubMed
  48. Vet Immunol Immunopathol. 2006 Apr 15;110(3-4):279-92 - PubMed
  49. J Exp Med. 1998 Jun 15;187(12):2065-72 - PubMed
  50. Nat Immunol. 2015 Nov;16(11):1114-23 - PubMed
  51. Eur J Immunol. 2007 Jun;37(6):1442-52 - PubMed
  52. Eur J Immunol. 2004 Mar;34(3):669-76 - PubMed
  53. PLoS One. 2014 Jun 23;9(6):e100619 - PubMed
  54. Blood. 2004 Jan 15;103(2):664-72 - PubMed
  55. Immunology. 1996 Sep;89(1):76-83 - PubMed
  56. J Virol. 2010 Aug;84(15):7822-31 - PubMed
  57. J Immunol Methods. 2005 Nov 30;306(1-2):16-27 - PubMed

Publication Types