Display options
Share it on

AoB Plants. 2016 Oct 27;8. doi: 10.1093/aobpla/plw064. Print 2016.

Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant.

AoB PLANTS

Christoph C F Schinkel, Bernhard Kirchheimer, Agnes S Dellinger, Simone Klatt, Manuela Winkler, Stefan Dullinger, Elvira Hörandl

Affiliations

  1. Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), Georg-August-University of Göttingen, Untere Karspüle 2, 37073?Göttingen, Germany.
  2. Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
  3. GLORIA co-ordination, University of Natural Resources and Life Sciences Vienna, Centre for Global Change and Sustainability, Vienna, Austria.
  4. Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), Georg-August-University of Göttingen, Untere Karspüle 2, 37073?Göttingen, Germany [email protected].

PMID: 27594702 PMCID: PMC5091893 DOI: 10.1093/aobpla/plw064

Abstract

Apomictic plants expand their geographical distributions more to higher elevations compared to their sexual progenitors. It was so far unclear whether this tendency is related to mode of reproduction itself or represents a side effect of polyploidy. Apomixis is advantageous for range expansions as no mating partners and pollinators are needed (Baker's rule). Polyploidy is thought to infer fitness advantages and a higher vigour that would enable plants to adjust better to more extreme climatic conditions. However, little is known about actual performance of plants at higher elevations. We analyzed 81 populations of Ranunculus kuepferi from the whole distribution area in the European Alps to quantify apomictic versus sexual seed formation via flow cytometric seed screening. Seed set and vegetative growth were measured as fitness parameters. All parameters were correlated to geographical distribution, elevation, temperature and precipitation. Flow cytometric seed screening revealed predominantly obligate sexuality (88.9 %) and facultative apomixis in diploid populations, while tetraploid populations are predominantly facultative (65.4 %) to obligate apomictic. Apomictic seed formation correlated significantly to higher elevations, which explains also the observed niche shift to lower temperatures. However, within the tetraploid range, there is no apparent correlation of degree of facultative apomixis to geographical distance. Apomixis appeared in diploids three times independently in separated, otherwise sexual populations in the southwestern refugial areas of the Alps. Diploid apomixis was not successful in range expansions, and obligate sexual polyploids were not observed. Polyploidy may relate to cold tolerance as an adaptation to conditions at high elevations, where diploid sexuals have no fitness advantage. Instead, facultative apomixis may have aided colonization of higher elevations and range expansions in the Alps without mate and pollinator limitation, but did not necessarily involve long-distance dispersal. A direct influence of low temperatures on unreduced gamete formation cannot be ruled out.

© The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

Keywords: Apomixis; Ranunculus kuepferi; environmental gradients; fitness; flow cytometry; geographical parthenogenesis; polyploidy

References

  1. Plant J. 2000 Jan;21(1):97-108 - PubMed
  2. Plant Cell. 1993 Nov;5(11):1661-1668 - PubMed
  3. Nat Rev Genet. 2002 Nov;3(11):827-37 - PubMed
  4. Trends Genet. 2003 Mar;19(3):141-7 - PubMed
  5. Mol Biol Evol. 2003 Mar;20(3):338-50 - PubMed
  6. Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1113-21 - PubMed
  7. Annu Rev Plant Biol. 2003;54:547-74 - PubMed
  8. Mol Ecol. 2004 Feb;13(2):349-70 - PubMed
  9. Genetics. 2004 Aug;167(4):1961-73 - PubMed
  10. Hereditas. 2004;141(1):19-30 - PubMed
  11. Ann Bot. 2005 Jan;95(1):255-60 - PubMed
  12. Curr Opin Plant Biol. 2005 Apr;8(2):122-8 - PubMed
  13. Curr Opin Plant Biol. 2005 Apr;8(2):135-41 - PubMed
  14. Cytogenet Genome Res. 2005;109(1-3):283-92 - PubMed
  15. Mol Ecol. 2005 Jul;14(8):2493-510 - PubMed
  16. Nat Rev Genet. 2005 Nov;6(11):836-46 - PubMed
  17. Trends Ecol Evol. 2005 Sep;20(9):495-502 - PubMed
  18. New Phytol. 2006;171(3):525-38 - PubMed
  19. Curr Biol. 2006 Aug 22;16(16):1652-9 - PubMed
  20. New Phytol. 2007;173(2):231-49 - PubMed
  21. Biochim Biophys Acta. 2007 May-Jun;1769(5-6):422-8 - PubMed
  22. Nat Protoc. 2007;2(9):2233-44 - PubMed
  23. Cell. 2007 Nov 2;131(3):452-62 - PubMed
  24. Ann Bot. 2008 Jan;101(1):59-71 - PubMed
  25. Annu Rev Genet. 2007;41:509-37 - PubMed
  26. Curr Biol. 2008 May 20;18(10):R435-R444 - PubMed
  27. Mol Phylogenet Evol. 2009 Aug;52(2):303-11 - PubMed
  28. Annu Rev Plant Biol. 2009;60:561-88 - PubMed
  29. Mol Ecol. 2009 Sep;18(17):3730-44 - PubMed
  30. Ann Bot. 2010 Mar;105(3):457-70 - PubMed
  31. Sex Plant Reprod. 2010 Mar;23(1):73-86 - PubMed
  32. Plant Cell. 2010 Jul;22(7):2105-12 - PubMed
  33. Plant Ecol Divers. 2008 Nov 1;1(2):309-320 - PubMed
  34. Trends Plant Sci. 2010 Dec;15(12):684-92 - PubMed
  35. Mol Ecol. 2011 Jan;20(1):105-13 - PubMed
  36. Am J Bot. 2010 Oct;97(10):1719-31 - PubMed
  37. Am J Bot. 2005 Nov;92(11):1797-810 - PubMed
  38. Am J Bot. 2004 Dec;91(12):2087-101 - PubMed
  39. Ann Bot. 2011 Aug;108(2):381-90 - PubMed
  40. Am J Bot. 2012 Jan;99(1):55-67 - PubMed
  41. Evolution. 2012 Apr;66(4):985-95 - PubMed
  42. PLoS One. 2012;7(5):e36491 - PubMed
  43. Plant Physiol. 2012 Dec;160(4):1808-26 - PubMed
  44. Oecologia. 2013 Mar;171(3):743-60 - PubMed
  45. Heredity (Edinb). 2013 Jun;110(6):560-9 - PubMed
  46. New Phytol. 2013 Apr;198(2):605-16 - PubMed
  47. Plant Reprod. 2013 Jun;26(2):65-81 - PubMed
  48. Plant Reprod. 2013 Dec;26(4):309-15 - PubMed
  49. New Phytol. 2014 Dec;204(4):1000-12 - PubMed
  50. Proc Natl Acad Sci U S A. 2015 May 5;112(18):E2357-65 - PubMed
  51. New Phytol. 2015 Oct;208(2):306-23 - PubMed
  52. New Phytol. 2015 Nov;208(3):656-67 - PubMed
  53. Front Plant Sci. 2016 Mar 08;7:278 - PubMed
  54. J Biogeogr. 2016 Mar 22;43(4):716-726 - PubMed
  55. Evolution. 1967 Dec;21(4):853-856 - PubMed

Publication Types