Display options
Share it on

Front Cell Dev Biol. 2016 Jun 24;4:65. doi: 10.3389/fcell.2016.00065. eCollection 2016.

Membrane Thinning and Thickening Induced by Membrane-Active Amphipathic Peptides.

Frontiers in cell and developmental biology

Stephan L Grage, Sergii Afonin, Sezgin Kara, Gernot Buth, Anne S Ulrich

Affiliations

  1. Karlsruhe Institute of Technology, Institute of Biological Interfaces Karlsruhe, Germany.
  2. Karlsruhe Institute of Technology, Institute of Organic Chemistry Karlsruhe, Germany.
  3. Karlsruhe Institute of Technology, Institute for Accelerator Physics and Technology Karlsruhe, Germany.
  4. Karlsruhe Institute of Technology, Institute of Biological InterfacesKarlsruhe, Germany; Karlsruhe Institute of Technology, Institute of Organic ChemistryKarlsruhe, Germany.

PMID: 27595096 PMCID: PMC4999517 DOI: 10.3389/fcell.2016.00065

Abstract

Membrane thinning has been discussed as a fundamental mechanism by which antimicrobial peptides can perturb cellular membranes. To understand which factors play a role in this process, we compared several amphipathic peptides with different structures, sizes and functions in their influence on the lipid bilayer thickness. PGLa and magainin 2 from X. laevis were studied as typical representatives of antimicrobial cationic amphipathic α-helices. A 1:1 mixture of these peptides, which is known to possess synergistically enhanced activity, allowed us to evaluate whether and how this synergistic interaction correlates with changes in membrane thickness. Other systems investigated here include the α-helical stress-response peptide TisB from E. coli (which forms membrane-spanning dimers), as well as gramicidin S from A. migulanus (a natural antibiotic), and BP100 (designer-made antimicrobial and cell penetrating peptide). The latter two are very short, with a circular β-pleated and a compact α-helical structure, respectively. Solid-state (2)H-NMR and grazing incidence small angle X-ray scattering (GISAXS) on oriented phospholipid bilayers were used as complementary techniques to access the hydrophobic thickness as well as the bilayer-bilayer repeat distance including the water layer in between. This way, we found that magainin 2, gramicidin S, and BP100 induced membrane thinning, as expected for amphiphilic peptides residing in the polar/apolar interface of the bilayer. PGLa, on the other hand, decreased the hydrophobic thickness only at very high peptide:lipid ratios, and did not change the bilayer-bilayer repeat distance. TisB even caused an increase in the hydrophobic thickness and repeat distance. When reconstituted as a mixture, PGLa and magainin 2 showed a moderate thinning effect which was less than that of magainin 2 alone, hence their synergistically enhanced activity does not seem to correlate with a modulation of membrane thickness. Overall, the absence of a typical thinning response in the case of PGLa, and the increase in the repeat distance and membrane thickening observed for TisB, demonstrate that the concept of peptide-induced membrane thinning cannot be generalized. Instead, these results suggest that different factors contribute to the resulting changes in membrane thickness, such as the peptide orientation in the bilayer, and/or bilayer adaptation to hydrophobic mismatch.

Keywords: antimicrobial and cell penetrating peptides; gramicidin S; grazing incidence small angle X-ray scattering; lipid bilayer thickness; magainin; membrane thinning; oriented bilayer samples; solid-state deuterium nuclear magnetic resonance

References

  1. Biophys J. 2003 Jun;84(6):3751-8 - PubMed
  2. Biophys J. 1993 May;64(5):1476-81 - PubMed
  3. Biophys J. 2008 Oct;95(8):3872-81 - PubMed
  4. Biochim Biophys Acta. 2013 Mar;1828(3):944-55 - PubMed
  5. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):55-70 - PubMed
  6. Biochemistry. 1975 Jun 3;14(11):2283-7 - PubMed
  7. Appl Environ Microbiol. 2015 Jun;81(11):3593-603 - PubMed
  8. Sci Rep. 2015 Mar 25;5:9388 - PubMed
  9. Chem Phys Lipids. 1998 Sep;95(1):83-94 - PubMed
  10. J Biol Chem. 2006 Oct 27;281(43):32089-94 - PubMed
  11. PLoS Biol. 2010 Feb 23;8(2):e1000317 - PubMed
  12. Biophys J. 1990 Mar;57(3):405-12 - PubMed
  13. Biochim Biophys Acta. 2015 Sep;1848(9):1944-54 - PubMed
  14. Biophys J. 2012 Oct 3;103(7):1460-9 - PubMed
  15. Biochim Biophys Acta. 2006 Sep;1758(9):1292-302 - PubMed
  16. Biochemistry. 2000 Jul 25;39(29):8347-52 - PubMed
  17. Biophys J. 1995 May;68(5):1727-39 - PubMed
  18. Biophys J. 2005 Dec;89(6):4043-50 - PubMed
  19. Biophys J. 2000 Dec;79(6):3172-92 - PubMed
  20. Chembiochem. 2011 Jan 3;12(1):132-7 - PubMed
  21. Biochim Biophys Acta. 2012 May;1818(5):1242-9 - PubMed
  22. Eur J Biochem. 1995 Mar 1;228(2):257-64 - PubMed
  23. J Phys Chem Lett. 2016 Apr 7;7(7):1116-20 - PubMed
  24. Biochim Biophys Acta. 2014 Sep;1838(9):2260-8 - PubMed
  25. Peptides. 2012 Oct;37(2):207-15 - PubMed
  26. Biochemistry. 1994 Mar 22;33(11):3342-9 - PubMed
  27. J Am Chem Soc. 2008 Dec 10;130(49):16512-4 - PubMed
  28. Appl Environ Microbiol. 2007 Oct;73(20):6620-8 - PubMed
  29. Clin Microbiol Rev. 2006 Jul;19(3):491-511 - PubMed
  30. Biochim Biophys Acta. 2000 Sep 29;1468(1-2):213-30 - PubMed
  31. ACS Chem Biol. 2010 Oct 15;5(10):905-17 - PubMed
  32. J Pept Sci. 2015 May;21(5):436-45 - PubMed
  33. Eur Biophys J. 2010 Mar;39(4):609-21 - PubMed
  34. J Biomol NMR. 2015 Apr;61(3-4):287-98 - PubMed
  35. J Biomol NMR. 2001 Nov;21(3):191-208 - PubMed
  36. PLoS One. 2012;7(10):e47745 - PubMed
  37. J Magn Reson. 2006 Nov;183(1):77-86 - PubMed
  38. Biophys J. 2006 Nov 1;91(9):3285-300 - PubMed
  39. Eur Biophys J. 2012 May;41(5):475-82 - PubMed
  40. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jun;59(6):7018-24 - PubMed
  41. Top Curr Chem. 2008;273:139-54 - PubMed
  42. Methods Mol Biol. 2010;618:183-207 - PubMed
  43. Biochim Biophys Acta. 2016 Jun;1858(6):1328-38 - PubMed
  44. Biochemistry. 1998 Jun 30;37(26):9333-45 - PubMed
  45. Biochim Biophys Acta. 2009 Jul;1788(7):1482-96 - PubMed
  46. Biophys J. 2008 Dec 15;95(12):5779-88 - PubMed
  47. Biophys J. 2006 Oct 15;91(8):2848-59 - PubMed
  48. Biophys J. 2005 May;88(5):3392-7 - PubMed
  49. Biochemistry. 1995 Dec 26;34(51):16764-9 - PubMed
  50. Biochim Biophys Acta. 2014 Mar;1838(3):940-9 - PubMed
  51. Biochim Biophys Acta. 2008 Jul-Aug;1778(7-8):1528-36 - PubMed
  52. Biophys J. 2005 Apr;88(4):2626-37 - PubMed
  53. Biophys J. 2013 Mar 19;104(6):L9-11 - PubMed
  54. Biophys J. 1979 Sep;27(3):339-58 - PubMed
  55. FEBS Open Bio. 2015 Jun 15;5:515-21 - PubMed
  56. Peptides. 2007 Dec;28(12):2276-85 - PubMed
  57. Nat Rev Microbiol. 2005 Mar;3(3):238-50 - PubMed
  58. Biochim Biophys Acta. 2015 Mar;1848(3):833-41 - PubMed

Publication Types