Display options
Share it on

Front Microbiol. 2016 Aug 23;7:1305. doi: 10.3389/fmicb.2016.01305. eCollection 2016.

Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium discoideum.

Frontiers in microbiology

Sebastián Riquelme, Macarena Varas, Camila Valenzuela, Paula Velozo, Nicolás Chahin, Paulina Aguilera, Andrea Sabag, Bayron Labra, Sergio A Álvarez, Francisco P Chávez, Carlos A Santiviago

Affiliations

  1. Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile Santiago, Chile.
  2. Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile.

PMID: 27602025 PMCID: PMC4993766 DOI: 10.3389/fmicb.2016.01305

Abstract

The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host-pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected during infection.

Keywords: Dictyostelium; O-antigen; PhoPQ; SPI-1; SPI-2; Salmonella; T6SS; intracellular survival

References

  1. Mol Microbiol. 1998 Oct;30(1):163-74 - PubMed
  2. Front Microbiol. 2014 May 21;5:240 - PubMed
  3. Eur J Cell Biol. 2013 Feb;92(2):45-53 - PubMed
  4. Infect Immun. 2016 Mar 24;84(4):1226-38 - PubMed
  5. Clin Microbiol Infect. 2009 Oct;15(10):894-905 - PubMed
  6. Cell Microbiol. 2014 Jan;16(1):15-26 - PubMed
  7. Infect Immun. 2012 Jun;80(6):1996-2007 - PubMed
  8. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10079-83 - PubMed
  9. BMC Genomics. 2009 Aug 04;10:354 - PubMed
  10. Appl Environ Microbiol. 2010 Aug;76(15):5263-8 - PubMed
  11. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5189-93 - PubMed
  12. PLoS Pathog. 2009 Sep;5(9):e1000567 - PubMed
  13. Vet Res. 2014 Jan 09;45:2 - PubMed
  14. Appl Environ Microbiol. 2005 Mar;71(3):1562-9 - PubMed
  15. Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10644-9 - PubMed
  16. ISME J. 2009 Jun;3(6):666-74 - PubMed
  17. J Bacteriol. 2010 Jan;192(2):560-7 - PubMed
  18. Mol Microbiol. 1998 Oct;30(1):175-88 - PubMed
  19. Infect Immun. 1999 Feb;67(2):700-7 - PubMed
  20. Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1528-33 - PubMed
  21. Curr Biol. 2004 Jun 8;14(11):1018-24 - PubMed
  22. Genomics. 2009 Aug;94(2):132-7 - PubMed
  23. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5054-8 - PubMed
  24. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D332-3 - PubMed
  25. Infect Immun. 2012 Feb;80(2):839-49 - PubMed
  26. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7077-81 - PubMed
  27. Mol Microbiol. 2013 Mar;87(5):1013-28 - PubMed
  28. Curr Opin Microbiol. 2013 Feb;16(1):38-44 - PubMed
  29. EMBO J. 2001 Dec 3;20(23):6772-82 - PubMed
  30. Infect Immun. 2013 Nov;81(11):4311-20 - PubMed
  31. Mol Microbiol. 2005 Jul;57(1):85-96 - PubMed
  32. Appl Environ Microbiol. 2009 Mar;75(6):1793-5 - PubMed
  33. PLoS Pathog. 2009 Jul;5(7):e1000477 - PubMed
  34. J Bacteriol. 2008 May;190(9):3155-60 - PubMed
  35. J Biol Chem. 2011 Aug 26;286(34):30010-21 - PubMed
  36. Microb Pathog. 1990 Oct;9(4):255-65 - PubMed
  37. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  38. Methods Mol Biol. 2013;983:59-92 - PubMed
  39. Infect Immun. 2013 Apr;81(4):1207-20 - PubMed
  40. Infect Immun. 1976 Jun;13(6):1539-42 - PubMed
  41. PLoS One. 2011;6(8):e23876 - PubMed
  42. Dev Biol Stand. 1983;53:47-54 - PubMed
  43. Curr Biol. 2003 Jan 8;13(1):47-52 - PubMed
  44. PLoS One. 2013 May 14;8(5):e63917 - PubMed
  45. FEMS Microbiol Lett. 2015 May;362(10 ):null - PubMed
  46. Oncotarget. 2016 Jun 7;7(23):35169-80 - PubMed
  47. J Bacteriol. 1979 Apr;138(1):155-61 - PubMed
  48. J Bacteriol. 1991 Nov;173(22):7151-63 - PubMed
  49. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  50. Nature. 1981 May 21;291(5812):238-9 - PubMed
  51. PLoS One. 2014 Jul 09;9(7):e99820 - PubMed
  52. PLoS One. 2013 Aug 08;8(8):e73287 - PubMed
  53. J Bacteriol. 1991 Nov;173(21):6760-5 - PubMed
  54. Appl Environ Microbiol. 2004 Jun;70(6):3706-14 - PubMed
  55. IUBMB Life. 2015 Jul;67(7):482-97 - PubMed
  56. Nucleic Acids Res. 2013 Jan;41(Database issue):D676-83 - PubMed
  57. Nat Rev Microbiol. 2008 Jan;6(1):53-66 - PubMed
  58. Nat Protoc. 2007;2(6):1307-16 - PubMed
  59. Curr Drug Targets. 2011 Jun;12(7):942-54 - PubMed
  60. Front Microbiol. 2016 Jan 05;6:1455 - PubMed
  61. Infect Immun. 2008 May;76(5):1979-91 - PubMed
  62. ISME J. 2011 Feb;5(2):262-73 - PubMed
  63. Infect Immun. 2006 Oct;74(10):5914-25 - PubMed
  64. Microbiology. 2007 Apr;153(Pt 4):1207-20 - PubMed
  65. MBio. 2013 Apr 16;4(2):e00065 - PubMed
  66. FEMS Microbiol Lett. 2009 Aug;297(2):241-9 - PubMed
  67. Environ Microbiol Rep. 2013 Jun;5(3):377-86 - PubMed
  68. Cell Microbiol. 2011 Nov;13(11):1793-811 - PubMed
  69. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 - PubMed
  70. EMBO J. 2009 Feb 18;28(4):315-25 - PubMed
  71. Infect Immun. 2011 Oct;79(10):4227-39 - PubMed
  72. Semin Cell Dev Biol. 2011 Feb;22(1):70-6 - PubMed
  73. Infect Immun. 2005 Jun;73(6):3358-66 - PubMed
  74. Int J Med Microbiol. 2002 Mar;291(8):615-24 - PubMed
  75. Microb Ecol. 2003 Oct;46(3):358-69 - PubMed
  76. Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14564-9 - PubMed
  77. Microbiology. 2007 Jun;153(Pt 6):1781-9 - PubMed
  78. Immunology. 2010 Jun;130(2):273-87 - PubMed

Publication Types