Display options
Share it on

Genes Cancer. 2016 Jul;7(7):260-277. doi: 10.18632/genesandcancer.114.

Amitriptyline induces mitophagy that precedes apoptosis in human HepG2 cells.

Genes & cancer

Marina Villanueva-Paz, Mario D Cordero, Ana Delgado Pavón, Beatriz Castejón Vega, David Cotán, Mario De la Mata, Manuel Oropesa-Ávila, Elizabet Alcocer-Gomez, Isabel de Lavera, Juan Garrido-Maraver, José Carrascosa, Ana Paula Zaderenko, Jordi Muntané, Manuel de Miguel, José Antonio Sánchez-Alcázar

Affiliations

  1. Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain.
  2. Facultad de Odontología, Universidad de Sevilla, Sevilla, Spain.
  3. Sistemas Físicos, Químicos y Naturales-Universidad Pablo de Olavide, Sevilla, Spain.
  4. Departmento de Cirugía General y Aparato Digestivo, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
  5. Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.
  6. Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.

PMID: 27738496 PMCID: PMC5059116 DOI: 10.18632/genesandcancer.114

Abstract

Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments.

Keywords: HepG2 cells; amitriptyline; apoptosis; mitophagy; oxidative stress

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

  1. Protein Cell. 2010 May;1(5):468-77 - PubMed
  2. Apoptosis. 1998 Sep;3(4):255-60 - PubMed
  3. Drug Resist Updat. 2004 Apr;7(2):97-110 - PubMed
  4. Glycobiology. 2014 Feb;24(2):179-84 - PubMed
  5. Nat Protoc. 2012 May 31;7(6):1235-46 - PubMed
  6. Biochem Biophys Res Commun. 2005 Mar 11;328(2):623-32 - PubMed
  7. Cancer Lett. 2008 Jul 18;266(1):6-11 - PubMed
  8. Hepatology. 2011 Sep 2;54(3):1009-19 - PubMed
  9. Blood. 2003 Apr 15;101(8):3212-9 - PubMed
  10. J Bioenerg Biomembr. 2007 Feb;39(1):13-21 - PubMed
  11. Antioxid Redox Signal. 2009 Dec;11(12):3013-69 - PubMed
  12. J Drug Target. 2007 Aug-Sep;15(7-8):475-86 - PubMed
  13. Arch Biochem Biophys. 2007 Jun 15;462(2):245-53 - PubMed
  14. Anticancer Drugs. 2010 Nov;21(10):932-44 - PubMed
  15. Aging Cell. 2006 Apr;5(2):187-95 - PubMed
  16. Int J Biol Sci. 2014 Sep 13;10(9):1072-83 - PubMed
  17. Oncogene. 2003 Jun 19;22(25):3927-36 - PubMed
  18. J Psychiatr Res. 2012 Mar;46(3):341-5 - PubMed
  19. Nat Rev Mol Cell Biol. 2009 Jul;10 (7):458-67 - PubMed
  20. Semin Cancer Biol. 2008 Jun;18(3):226-35 - PubMed
  21. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):378-83 - PubMed
  22. Hepatology. 2000 Sep;32(3):482-90 - PubMed
  23. Oncogene. 2004 Apr 12;23(16):2891-906 - PubMed
  24. Br J Dermatol. 2010 Aug;163(2):310-20 - PubMed
  25. Toxicology. 2008 Jan 14;243(1-2):51-8 - PubMed
  26. FEBS Lett. 2001 Jan 19;488(3):123-32 - PubMed
  27. Drugs Aging. 1996 Jun;8(6):459-76 - PubMed
  28. Cell Death Dis. 2010;1:e18 - PubMed
  29. Autophagy. 2009 Jan;5(1):19-32 - PubMed
  30. Seikagaku. 2011 Feb;83(2):126-30 - PubMed
  31. J Hepatol. 2006 Oct;45(4):529-38 - PubMed
  32. Methods Mol Biol. 2006;320:283-93 - PubMed
  33. Lab Invest. 2001 Feb;81(2):149-58 - PubMed
  34. Nat Cell Biol. 2014 Aug;16(8):728-36 - PubMed
  35. Cancer Immunol Immunother. 2004 May;53(5):461-70 - PubMed
  36. Autophagy. 2015;11(8):1408-24 - PubMed
  37. Free Radic Biol Med. 1999 Dec;27(11-12):1228-37 - PubMed
  38. J Cell Biol. 2008 Dec 1;183(5):795-803 - PubMed
  39. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  40. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
  41. Nat Rev Drug Discov. 2009 Jul;8(7):579-91 - PubMed
  42. Anesth Analg. 2006 Jun;102(6):1728-33 - PubMed
  43. CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90 - PubMed
  44. J Cell Biol. 2001 Feb 19;152(4):657-68 - PubMed
  45. Histochem Cell Biol. 2008 Apr;129(4):389-406 - PubMed
  46. Oncogene. 2008 Oct 27;27(50):6434-51 - PubMed
  47. Cancer Cell. 2006 Sep;10(3):175-6 - PubMed
  48. Int J Cancer. 2010 May 1;126(9):2049-66 - PubMed

Publication Types