Display options
Share it on

J Biogeogr. 2016 Mar 22;43(4):716-726. doi: 10.1111/jbi.12663.

A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis.

Journal of biogeography

Bernhard Kirchheimer, Christoph C F Schinkel, Agnes S Dellinger, Simone Klatt, Dietmar Moser, Manuela Winkler, Jonathan Lenoir, Marco Caccianiga, Antoine Guisan, Diego Nieto-Lugilde, Jens-Christian Svenning, Wilfried Thuiller, Pascal Vittoz, Wolfgang Willner, Niklaus E Zimmermann, Elvira Hörandl, Stefan Dullinger

Affiliations

  1. Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria.
  2. Department of Systematics, Biodiversity and Evolution of Plants, Georg-August-University of Göttingen, 37073 Göttingen, Germany.
  3. Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria; GLORIA co-ordination, University of Natural Resources and Life Sciences Vienna, Center for Global Change and Sustainability, Vienna, Austria; Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innsbruck, Austria.
  4. UR Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRSUPJV), Jules Verne University of Picardie, F-80037 Amiens Cedex 1, France.
  5. Department of Biosciences, University of Milan, 20133 Milan, Italy.
  6. Department of Ecology and Evolution, University of Lausanne,, Switzerland; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland.
  7. Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD 21532, USA.
  8. Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark.
  9. Laboratoire d'Écologie Alpine (LECA), Université Grenoble Alpes, F-38000 Grenoble, France; Laboratoire d'Écologie Alpine (LECA), CNRS, GrenobleF-38000, France.
  10. Institute of Earth Surface Dynamics, University of Lausanne,, Switzerland.
  11. Vienna Institute for Nature Conservation and Analyses, 1090 Vienna, Austria.
  12. Landscape Dynamics, Swiss Federal Research Institute WSL, Birmensdorf CH-8903, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology ETH, CH-8092 Zürich, Switzerland.

PMID: 27482126 PMCID: PMC4966631 DOI: 10.1111/jbi.12663

Abstract

AIM: Emerging polyploids may depend on environmental niche shifts for successful establishment. Using the alpine plant

LOCATION: European Alps.

METHODS: We sampled 12 individuals from each of 102 populations of

RESULTS: All comparisons indicate that the niches of the two cytotypes differ in optima and/or breadths, but results vary in important details. The whole-range analysis suggests differentiation along the temperature gradient to be most important. However, sympatric comparisons indicate that this climatic shift was not a direct response to competition with diploid ancestors. Moreover, fine-grained analyses demonstrate niche contraction of tetraploids, especially in the sympatric range, that goes undetected with coarse-grained data.

MAIN CONCLUSIONS: Although the niche optima of the two cytotypes differ, separation along ecological gradients was probably less decisive for polyploid establishment than a shift towards facultative apomixis, a particularly effective strategy to avoid minority cytotype exclusion. In addition, our results suggest that coarse-grained analyses overestimate niche breadths of widely distributed taxa. Niche comparison analyses should hence be conducted at environmental data resolutions appropriate for the organism and question under study.

Keywords: European Alps; Ranunculus kuepferi; alpine plants; apomixis; competition; indicator values; niche breadth; niche shift; polyploidization; spatial grain

References

  1. Annu Rev Genet. 2000;34:401-437 - PubMed
  2. Nature. 2002 Jun 20;417(6891):844-8 - PubMed
  3. Curr Opin Plant Biol. 2005 Apr;8(2):135-41 - PubMed
  4. Heredity (Edinb). 2005 May;94(5):538-46 - PubMed
  5. Evolution. 2005 Sep;59(9):1936-44 - PubMed
  6. Nat Rev Genet. 2005 Nov;6(11):836-46 - PubMed
  7. Trends Ecol Evol. 2005 Sep;20(9):495-502 - PubMed
  8. Trends Ecol Evol. 2005 Nov;20(11):591-7 - PubMed
  9. New Phytol. 2006;171(3):525-38 - PubMed
  10. Evolution. 2007 Jan;61(1):125-40 - PubMed
  11. Nat Protoc. 2007;2(9):2233-44 - PubMed
  12. Ann Bot. 2007 Dec;100(6):1259-70 - PubMed
  13. Evolution. 2008 Nov;62(11):2868-83 - PubMed
  14. Oecologia. 2008 Dec;158(3):463-72 - PubMed
  15. Ecology. 2009 May;90(5):1366-77 - PubMed
  16. Mol Ecol. 2009 Sep;18(17):3730-44 - PubMed
  17. Ann Bot. 2010 Mar;105(3):457-70 - PubMed
  18. Ann Bot. 2010 Dec;106(6):967-77 - PubMed
  19. Trends Ecol Evol. 1994 May;9(5):191-3 - PubMed
  20. Am J Bot. 2007 Sep;94(9):1527-33 - PubMed
  21. Science. 2012 Mar 16;335(6074):1344-8 - PubMed
  22. Am J Bot. 2012 Apr;99(4):655-62 - PubMed
  23. Heredity (Edinb). 2013 Jun;110(6):560-9 - PubMed
  24. Glob Chang Biol. 2013 May;19(5):1470-81 - PubMed
  25. Glob Chang Biol. 2013 Oct;19(10):2932-9 - PubMed
  26. Trends Ecol Evol. 2014 May;29(5):260-9 - PubMed
  27. Ecol Lett. 2014 May;17(5):574-82 - PubMed
  28. Ecography (Cop.). 2015 Jun 1;38(6):578-589 - PubMed
  29. Evolution. 1967 Dec;21(4):853-856 - PubMed

Publication Types

Grant support