Display options
Share it on

Clin Transl Gastroenterol. 2016 Sep 01;7(9):e188. doi: 10.1038/ctg.2016.48.

Time Lapse to Colorectal Cancer: Telomere Dynamics Define the Malignant Potential of Polyps.

Clinical and translational gastroenterology

Brooke R Druliner, Xiaoyang Ruan, Ruth Johnson, Diane Grill, Daniel O'Brien, Tsung-Po Lai, Shahrooz Rashtak, Donna Felmlee-Devine, Jill Washechek-Aletto, Andrei Malykh, Thomas Smyrk, Ann Oberg, Hongfang Liu, Jerry W Shay, David A Ahlquist, Lisa A Boardman

Affiliations

  1. Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  2. Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA.
  3. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
  4. Department of Cell Biology UT Southwestern Medical Center, Dallas, Texas, USA.
  5. Capital Biosciences Inc., Gaithersburg, Maryland, USA.
  6. Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA.

PMID: 27584834 PMCID: PMC5288594 DOI: 10.1038/ctg.2016.48

Abstract

OBJECTIVE: Whereas few adenomas become cancer, most colorectal cancers arise from adenomas. Telomere length is a recognized biomarker in multiple cancers, and telomere maintenance mechanisms (TMM) are exploited by malignant cells. We sought to determine whether telomere length and TMM distinguish cancer-associated adenomas from those that are cancer-free.

METHODS: Tissues were identified as cancer-adjacent polyp (CAP)-residual adenoma contiguous with cancer-and cancer-free polyp (CFP)-adenomas without malignancy. Telomere length, TMM, and expression were measured in 102 tissues including peripheral blood leukocytes (PBLs), normal colon epithelium, adenoma, and cancer (in CAP cases) from 31 patients. Telomere length was measured in a separate cohort of 342 PBL from CAP and CFP patients.

RESULTS: The mean differences in telomere length between normal and adenoma were greater in CAP than in CFP cases, P=0.001; telomere length in PBL was 91.7 bp greater in CAP than in CFP, P=0.007. Each 100 bp telomere increase was associated with a 1.14 (1.04-1.26) increased odds of being a CAP, P=0.0063. The polyp tissue from CAP patients had shorter telomeres and higher Telomerase reverse transcriptase (hTERT) expression compared with polyps from CFP patients, P=0.05. There was a greater degree of alternative lengthening of telomere (ALT) level difference in CFP polyps than in CAP polyps. The polyp telomere lengths of aggressive CAPs were significantly different from the polyps of non-aggressive CAPs, P=0.01.

CONCLUSIONS: Adenomas that progress to cancer exhibit distinct telomere length and TMM profiles. We report for the first time that PBL telomeres differ in patients with polyps that become malignant, and therefore may have clinical value in adenoma risk assessment and management.

Conflict of interest statement

Guarantor of the article: Lisa A. Boardman, MD. Specific author contributions: Study concept and design: BRD and LAB; acquisition of data: BRD, RJ, TS, JS, and LAB; analysis and interpretation of data

References

  1. Nucleic Acids Res. 2014 Feb;42(3):1733-46 - PubMed
  2. Gastroenterology. 2015 Oct;149(5):1177-1190.e3 - PubMed
  3. Nucleic Acids Res. 2009 Feb;37(3):e21 - PubMed
  4. Colorectal Dis. 2011 Nov;13(11):1265-72 - PubMed
  5. Am J Clin Nutr. 2008 Nov;88(5):1405-12 - PubMed
  6. Nucleic Acids Res. 2013 Jan;41(2):e34 - PubMed
  7. Gut. 2003 Sep;52(9):1304-7 - PubMed
  8. J Korean Med Sci. 2002 Jun;17(3):360-5 - PubMed
  9. Expert Rev Gastroenterol Hepatol. 2013 Nov;7(8):733-48 - PubMed
  10. J Intern Med. 2013 Nov;274(5):399-413 - PubMed
  11. Lancet Oncol. 2013 Oct;14(11):1112-20 - PubMed
  12. Science. 2015 Jan 16;347(6219):273-7 - PubMed
  13. Front Oncol. 2014 Jun 18;4:158 - PubMed
  14. PLoS One. 2013 Nov 21;8(11):e80015 - PubMed
  15. PLoS One. 2014 Feb 03;9(2):e86063 - PubMed
  16. Nucleic Acids Res. 2014 Jul;42(13):8565-77 - PubMed
  17. J Natl Cancer Inst. 2015 Apr 10;107(6):djv074 - PubMed
  18. Cancer Epidemiol Biomarkers Prev. 2014 Jun;23(6):1131 - PubMed
  19. Clin Transl Gastroenterol. 2014 Mar 06;5:e52 - PubMed
  20. Clin Gastroenterol Hepatol. 2009 Dec;7(12):1272-8 - PubMed
  21. Gastroenterology. 2001 Apr;120(5):1077-83 - PubMed
  22. Oncotarget. 2015 Dec 15;6(40):42468-77 - PubMed
  23. Cancer Epidemiol Biomarkers Prev. 2013 Nov;22(11):2047-54 - PubMed
  24. N Engl J Med. 1993 Apr 1;328(13):901-6 - PubMed
  25. Thorax. 2013 May;68(5):429-35 - PubMed
  26. Nat Biotechnol. 2009 Dec;27(12):1181-5 - PubMed
  27. Oncogene. 2016 Jan 7;35(1):94-104 - PubMed
  28. Arterioscler Thromb Vasc Biol. 2012 Mar;32(3):822-9 - PubMed
  29. Nature. 2015 May 14;521(7551):S16 - PubMed
  30. Cancer. 2002 Nov 15;95(10):2103-11 - PubMed
  31. World J Gastroenterol. 2007 Jul 28;13(28):3868-72 - PubMed
  32. Dis Colon Rectum. 2004 Apr;47(4):481-5 - PubMed
  33. Oncogene. 2009 Oct 29;28(43):3765-74 - PubMed
  34. Int J Biol Markers. 2012 Dec 27;27(4):e375-80 - PubMed
  35. FEBS Lett. 2010 Sep 10;584(17 ):3800-11 - PubMed
  36. Cancer Lett. 2000 Oct 1;158(2):179-84 - PubMed
  37. Clin Cancer Res. 1997 Nov;3(11):1931-41 - PubMed
  38. Nat Genet. 1998 Jun;19(2):182-6 - PubMed
  39. Aging Cell. 2010 Jun;9(3):383-97 - PubMed
  40. Gut. 2012 Feb;61(2):248-54 - PubMed
  41. Oncotarget. 2015 Sep 8;6(26):21816-26 - PubMed
  42. EMBO J. 1995 Sep 1;14(17):4240-8 - PubMed
  43. Nature. 1990 Aug 30;346(6287):866-8 - PubMed
  44. Eur J Clin Nutr. 2012 Dec;66(12):1290-4 - PubMed
  45. Hum Mol Genet. 2015 Sep 15;24(18):5356-66 - PubMed

Publication Types

Grant support