Display options
Share it on

mSystems. 2016 Aug 30;1(4). doi: 10.1128/mSystems.00091-16. eCollection 2016.

Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions.

mSystems

Ludovic Pelosi, Anne-Lise Ducluzeau, Laurent Loiseau, Frédéric Barras, Dominique Schneider, Ivan Junier, Fabien Pierrel

Affiliations

  1. Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), University of Grenoble Alpes, Grenoble, France; Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, UMR5525, Grenoble, France.
  2. School of Fisheries and Ocean Sciences, University of Alaska-Fairbanks, Fairbanks, Alaska, USA.
  3. Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, Marseille, France.

PMID: 27822549 PMCID: PMC5069965 DOI: 10.1128/mSystems.00091-16

Abstract

The ubiquitous ATP synthase uses an electrochemical gradient to synthesize cellular energy in the form of ATP. The production of this electrochemical gradient relies on liposoluble proton carriers like ubiquinone (UQ), which is used in the respiratory chains of eukaryotes and proteobacteria. The biosynthesis of UQ requires three hydroxylation reactions on contiguous positions of an aromatic ring. In

Keywords: biosynthesis; evolution; proteobacteria

References

  1. J Biol Chem. 2015 Oct 2;290(40):24140-51 - PubMed
  2. Syst Biol. 2012 May;61(3):539-42 - PubMed
  3. BMC Bioinformatics. 2004 Aug 19;5:113 - PubMed
  4. Science. 1999 Mar 5;283(5407):1476-81 - PubMed
  5. J Biol Chem. 2013 Jul 5;288(27):20085-92 - PubMed
  6. Science. 2008 Sep 19;321(5896):1670-3 - PubMed
  7. Biochemistry. 2010 Nov 16;49(45):9679-81 - PubMed
  8. Mol Syst Biol. 2006;2:2006.0008 - PubMed
  9. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 - PubMed
  10. J Biol Chem. 2001 Sep 7;276(36):33297-300 - PubMed
  11. Mol Microbiol. 2013 Jan;87(1):80-93 - PubMed
  12. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8392-6 - PubMed
  13. J Biotechnol. 2006 Aug 5;124(4):670-89 - PubMed
  14. Biochim Biophys Acta. 2014 Jul;1837(7):1004-11 - PubMed
  15. Front Microbiol. 2016 Feb 09;7:128 - PubMed
  16. Microbiol Rev. 1981 Jun;45(2):316-54 - PubMed
  17. Syst Biol. 2006 Aug;55(4):539-52 - PubMed
  18. Chem Biol. 2011 Sep 23;18(9):1134-42 - PubMed
  19. Biochim Biophys Acta. 2013 Feb;1827(2):79-93 - PubMed
  20. Crit Rev Microbiol. 2011 Feb;37(1):64-90 - PubMed
  21. Bioinformatics. 2014 Nov 15;30(22):3276-8 - PubMed
  22. Arch Biochem Biophys. 2014 Feb 15;544:2-17 - PubMed
  23. Protein Sci. 1997 Nov;6(11):2454-8 - PubMed
  24. J Biol Chem. 2003 Jul 11;278(28):25308-16 - PubMed
  25. Nat Rev Genet. 2013 Aug;14(8):559-71 - PubMed
  26. Curr Opin Struct Biol. 2015 Dec;35:93-9 - PubMed
  27. Biosci Biotechnol Biochem. 2015;80(1):23-33 - PubMed
  28. FEMS Microbiol Lett. 2000 May 15;186(2):157-61 - PubMed
  29. Int J Mol Sci. 2012 Nov 23;13(12):15601-39 - PubMed
  30. PLoS Comput Biol. 2011 Feb;7(2):e1001082 - PubMed
  31. Biochim Biophys Acta. 2010 Sep;1797(9):1587-605 - PubMed
  32. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8549-54 - PubMed
  33. Genome Biol Evol. 2014 Jan;6(1):149-60 - PubMed
  34. J Am Chem Soc. 2014 Jan 15;136(2):562-5 - PubMed
  35. J Biomol Struct Dyn. 2012;30(4):419-36 - PubMed
  36. Mol Biol Evol. 2008 Jul;25(7):1307-20 - PubMed
  37. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 - PubMed
  38. Syst Biol. 2010 May;59(3):307-21 - PubMed
  39. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):903-15 - PubMed
  40. PLoS Comput Biol. 2016 Jan 25;12(1):e1004690 - PubMed
  41. J Biol Chem. 1996 Feb 9;271(6):2995-3004 - PubMed

Publication Types