Display options
Share it on

R Soc Open Sci. 2016 Aug 17;3(8):160369. doi: 10.1098/rsos.160369. eCollection 2016 Aug.

The nature of functional variability in plantar pressure during a range of controlled walking speeds.

Royal Society open science

Juliet McClymont, Todd C Pataky, Robin H Crompton, Russell Savage, Karl T Bates

Affiliations

  1. Institute of Ageing and Chronic Disease , William Duncan Building, L7 8TX Liverpool , UK.
  2. Institute for Fiber Engineering , Shinshu University , Ueda , Japan.

PMID: 27853618 PMCID: PMC5108968 DOI: 10.1098/rsos.160369

Abstract

During walking, variability in step parameters allows the body to adapt to changes in substrate or unexpected perturbations that may occur as the feet interface with the environment. Despite a rich literature describing biomechanical variability in step parameters, there are as yet no studies that consider variability at the body-environment interface. Here, we used pedobarographic statistical parametric mapping (pSPM) and two standard measures of variability, mean square error (m.s.e.) and the coefficient of variation (CV), to assess the magnitude and spatial variability in plantar pressure across a range of controlled walking speeds. Results by reduced major axis, and pSPM regression, revealed no consistent linear relationship between m.s.e. and speed or m.s.e. and Froude number. A positive linear relationship, however, was found between CV and walking speed and CV and Froude number. The spatial distribution of variability was highly disparate when assessed by m.s.e. and CV: relatively high variability was consistently confined to the medial and lateral forefoot when measured by m.s.e., while the forefoot and heel show high variability when measured by CV. In absolute terms, variability by CV was universally low (less than 2.5%). From these results, we determined that variability as assessed by m.s.e. is independent of speed, but dependent on speed when assessed by CV.

Keywords: biomechanics; functional variability; pedobaragraphic statistical parametric mapping; plantar pressure; speed; step-to-step variation

References

  1. Phys Ther. 1990 Jun;70(6):340-7 - PubMed
  2. Folia Primatol (Basel). 1996;66(1-4):137-59 - PubMed
  3. J Gerontol A Biol Sci Med Sci. 2002 Mar;57(3):B115-25 - PubMed
  4. Exerc Sport Sci Rev. 2008 Oct;36(4):200-4 - PubMed
  5. J Nutr Health Aging. 2009 Dec;13(10):881-9 - PubMed
  6. J Bone Joint Surg Am. 1995 Dec;77(12):1819-28 - PubMed
  7. J Neuroeng Rehabil. 2012 Feb 09;9:12 - PubMed
  8. PLoS One. 2015 Apr 24;10(4):e0124879 - PubMed
  9. J Biomech. 2008 Jul 19;41(10):2136-43 - PubMed
  10. Nat Neurosci. 2002 Nov;5(11):1226-35 - PubMed
  11. Hum Mov Sci. 2007 Aug;26(4):555-89 - PubMed
  12. J Biomech Eng. 2007 Dec;129(6):802-10 - PubMed
  13. Gait Posture. 2007 Jun;26(1):128-34 - PubMed
  14. Phys Ther Sport. 2011 Feb;12(1):30-5 - PubMed
  15. J Neuroeng Rehabil. 2005 Aug 11;2:26 - PubMed
  16. Clin Biomech (Bristol, Avon). 2012 Jan;27(1):46-51 - PubMed
  17. J Biomech. 2006;39(3):444-52 - PubMed
  18. Arch Phys Med Rehabil. 2001 Aug;82(8):1050-6 - PubMed
  19. Foot Ankle. 1991 Apr;11(5):306-11 - PubMed
  20. Gait Posture. 2008 Apr;27(3):431-9 - PubMed
  21. Am Psychol. 1990 Aug;45(8):938-53 - PubMed
  22. Gait Posture. 2011 Jan;33(1):36-40 - PubMed
  23. J Rehabil Res Dev. 1993;30(2):210-23 - PubMed
  24. Clin Biomech (Bristol, Avon). 1991 Feb;6(1):14-8 - PubMed
  25. Hum Mov Sci. 2005 Apr;24(2):257-67 - PubMed
  26. J Biomech. 2004 Jun;37(6):935-8 - PubMed
  27. J Biomech Eng. 2001 Feb;123(1):27-32 - PubMed
  28. Can J Appl Physiol. 1996 Dec;21(6):471-80 - PubMed
  29. Gait Posture. 2012 May;36(1):102-7 - PubMed
  30. Nature. 1987 Jan 8-14;325(7000):147-9 - PubMed
  31. Gait Posture. 2008 May;27(4):572-7 - PubMed
  32. Science. 1994 Jul 29;265(5172):651-3 - PubMed
  33. J Biomech. 1997 Mar;30(3):243-50 - PubMed
  34. J Biomech. 2011 Feb 24;44(4):644-9 - PubMed
  35. Foot Ankle Int. 2004 Dec;25(12):926-33 - PubMed
  36. Appl Ergon. 2016 Mar;53 Pt A:71-8 - PubMed
  37. J Rehabil Res Dev. 1994 Aug;31(3):199-213 - PubMed
  38. Clin Biomech (Bristol, Avon). 2004 Jan;19(1):78-84 - PubMed
  39. Clin Biomech (Bristol, Avon). 1999 Jun;14(5):297-308 - PubMed
  40. PLoS One. 2013;8(2):e57209 - PubMed
  41. PLoS Comput Biol. 2010 Jul 15;6(7):e1000856 - PubMed
  42. J Biomech. 2008;41(9):1987-94 - PubMed
  43. Gait Posture. 2007 Jul;26(2):327-8; author reply 329-30 - PubMed
  44. J Anat. 2010 Sep;217(3):254-61 - PubMed
  45. Foot Ankle Int. 1994 Jan;15(1):35-40 - PubMed
  46. Gait Posture. 2004 Feb;19(1):91-100 - PubMed
  47. J Exp Biol. 2007 Feb;210(Pt 3):383-94 - PubMed
  48. J Biomech. 2003 Aug;36(8):1215-8 - PubMed
  49. Clin Biomech (Bristol, Avon). 2008 Oct;23(8):1073-9 - PubMed
  50. Gait Posture. 2012 Jul;36(3):527-31 - PubMed
  51. Electroencephalogr Clin Neurophysiol. 1987 Nov;67(5):402-11 - PubMed
  52. Gerontology. 2009;55(6):702-6 - PubMed
  53. Proc Biol Sci. 2013 Aug 21;280(1769):20131818 - PubMed
  54. Sports Biomech. 2007 May;6(2):224-43 - PubMed
  55. Gait Posture. 2012 Jan;35(1):36-42 - PubMed
  56. Arch Phys Med Rehabil. 1995 Nov;76(11):1000-5 - PubMed
  57. Curr Biol. 2016 Feb 8;26(3):338-43 - PubMed
  58. Sports Biomech. 2008 Jan;7(1):2-9 - PubMed

Publication Types