Display options
Share it on

Sci Rep. 2016 Nov 08;6:36626. doi: 10.1038/srep36626.

Network motifs modulate druggability of cellular targets.

Scientific reports

Fan Wu, Cong Ma, Cheemeng Tan

Affiliations

  1. Department of Biomedical Engineering, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA.
  2. Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.

PMID: 27824147 PMCID: PMC5100546 DOI: 10.1038/srep36626

Abstract

Druggability refers to the capacity of a cellular target to be modulated by a small-molecule drug. To date, druggability is mainly studied by focusing on direct binding interactions between a drug and its target. However, druggability is impacted by cellular networks connected to a drug target. Here, we use computational approaches to reveal basic principles of network motifs that modulate druggability. Through quantitative analysis, we find that inhibiting self-positive feedback loop is a more robust and effective treatment strategy than inhibiting other regulations, and adding direct regulations to a drug-target generally reduces its druggability. The findings are explained through analytical solution of the motifs. Furthermore, we find that a consensus topology of highly druggable motifs consists of a negative feedback loop without any positive feedback loops, and consensus motifs with low druggability have multiple positive direct regulations and positive feedback loops. Based on the discovered principles, we predict potential genetic targets in Escherichia coli that have either high or low druggability based on their network context. Our work establishes the foundation toward identifying and predicting druggable targets based on their network topology.

References

  1. Mol Syst Biol. 2012;8:617 - PubMed
  2. Drug Discov Today. 2005 Jan 15;10(2):139-47 - PubMed
  3. Science. 2002 Oct 25;298(5594):824-7 - PubMed
  4. Nat Rev Genet. 2004 Feb;5(2):101-13 - PubMed
  5. PLoS One. 2014 Apr 08;9(4):e93960 - PubMed
  6. Nat Rev Drug Discov. 2007 Mar;6(3):202-10 - PubMed
  7. Bioinformatics. 2009 Oct 1;25(19):2466-72 - PubMed
  8. Nat Cell Biol. 2004 Feb;6(2):97-105 - PubMed
  9. PLoS One. 2014 Aug 20;9(8):e105408 - PubMed
  10. Drug Discov Today. 2007 Jan;12(1-2):34-42 - PubMed
  11. Nat Nanotechnol. 2013 Aug;8(8):602-8 - PubMed
  12. Nat Rev Genet. 2007 Jun;8(6):450-61 - PubMed
  13. Nature. 2005 Oct 13;437(7061):942-3 - PubMed
  14. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1777-82 - PubMed
  15. Nat Rev Drug Discov. 2003 Oct;2(10):831-8 - PubMed
  16. Nature. 2001 May 3;411(6833):41-2 - PubMed
  17. Science. 1995 Aug 4;269(5224):696-9 - PubMed
  18. Nat Rev Drug Discov. 2004 Aug;3(8):711-5 - PubMed
  19. Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4 - PubMed
  20. J Allergy Clin Immunol. 2001 Feb;107(2):398-416 - PubMed
  21. Am J Cardiol. 2003 Mar 15;91(6):667-72 - PubMed
  22. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4328-32 - PubMed
  23. Genes Dev. 2010 Sep 1;24(17 ):1861-75 - PubMed
  24. Mol Syst Biol. 2008;4:228 - PubMed
  25. Cell. 2004 Feb 20;116(4):499-509 - PubMed
  26. Nature. 2012 Jun 10;486(7403):361-7 - PubMed
  27. Science. 2008 Oct 17;322(5900):390-5 - PubMed
  28. Cell. 2005 Sep 23;122(6):957-68 - PubMed
  29. Cell. 2011 Mar 18;144(6):986-98 - PubMed
  30. Nat Rev Drug Discov. 2002 Sep;1(9):727-30 - PubMed
  31. Nat Chem Biol. 2008 Nov;4(11):682-90 - PubMed
  32. Genes Brain Behav. 2014 Jan;13(1):13-24 - PubMed
  33. Nature. 2009 Nov 12;462(7270):175-81 - PubMed
  34. Nat Biotechnol. 2007 Jan;25(1):71-5 - PubMed
  35. Nat Methods. 2009 Jan;6(1):83-90 - PubMed
  36. Trends Endocrinol Metab. 2000 May-Jun;11(4):142-8 - PubMed
  37. Curr Opin Chem Biol. 2005 Aug;9(4):400-6 - PubMed
  38. Cell. 2009 Aug 21;138(4):760-73 - PubMed
  39. Chromosome Res. 2006;14(4):377-92 - PubMed
  40. Sci Rep. 2016 Feb 25;6:21872 - PubMed

MeSH terms

Publication Types