Display options
Share it on

J Raman Spectrosc. 2013 Jul;44(7):957-962. doi: 10.1002/jrs.4316. Epub 2013 Jun 01.

Observation of persistent α-helical content and discrete types of backbone disorder during a molten globule to ordered peptide transition via deep-UV resonance Raman spectroscopy.

Journal of Raman spectroscopy : JRS

Mia C Brown, Andrew Mutter, Ronald L Koder, Renee D JiJi, Jason W Cooley

Affiliations

  1. Department of Chemistry, University of Missouri, Columbia, MO 65211.
  2. Department of Physics, The City College of New York, New York, NY 10031.

PMID: 27795611 PMCID: PMC5082991 DOI: 10.1002/jrs.4316

Abstract

The molten globule state can aide in the folding of a protein to a functional structure and is loosely defined as an increase in structural disorder with conservation of the ensemble secondary structure content. Simultaneous observation of persistent secondary structure content with increased disorder has remained experimentally problematic. As a consequence, modeling how the molten globule state remains stable and how it facilitates proper folding remains difficult due to a lack of amenable spectroscopic techniques to characterize this class of partially unfolded proteins. Previously, deep-UV resonance Raman (dUVRR) spectroscopy has proven useful in the resolution of global and local structural fluctuations in the secondary structure of proteins. In this work, dUVRR was employed to study the molten globule to ordered transition of a model four-helix bundle protein, HP7. Both the average ensemble secondary structure and types of local disorder were monitored, without perturbation of the solvent, pH, or temperature. The molten globule to ordered transition is induced by stepwise coordination of two heme molecules. Persistent dUVRR spectral features in the amide III region at 1295-1301 and 1335-1338 cm

Keywords: dUVRR; deep-UV resonance Raman spectroscopy; molten globule; secondary structure; structural disorder; tertiary structure

References

  1. Biochemistry. 1998 May 5;37(18):6402-9 - PubMed
  2. J Am Chem Soc. 2005 Jun 1;127(21):7712-20 - PubMed
  3. J Biomol NMR. 1998 Aug;12(2):259-76 - PubMed
  4. Biochemistry. 1972 Oct 24;11(22):4120-31 - PubMed
  5. Nature. 1991 Jul 4;352(6330):36-42 - PubMed
  6. Biophys J. 2004 Dec;87(6):4056-64 - PubMed
  7. Curr Opin Struct Biol. 2007 Feb;17(1):3-14 - PubMed
  8. Biochemistry. 1990 Nov 20;29(46):10433-7 - PubMed
  9. Biochemistry. 1991 Apr 23;30(16):3871-9 - PubMed
  10. Protein Eng. 1999 Jun;12(6):485-90 - PubMed
  11. J Am Chem Soc. 2004 Jul 14;126(27):8433-40 - PubMed
  12. Biochemistry. 2006 Jan 10;45(1):34-41 - PubMed
  13. FEBS Lett. 1981 Dec 28;136(2):311-5 - PubMed
  14. J Phys Chem B. 2006 Feb 2;110(4):1928-43 - PubMed
  15. Biochemistry. 1990 Feb 13;29(6):1661-8 - PubMed
  16. Appl Spectrosc. 2005 Jun;59(6):776-81 - PubMed
  17. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7250-5 - PubMed
  18. J Am Chem Soc. 2006 Nov 15;128(45):14450-1 - PubMed
  19. Biochemistry. 1997 Oct 21;36(42):13122-32 - PubMed
  20. Biochemistry. 2003 Jul 29;42(29):8687-95 - PubMed
  21. J Phys Chem B. 2007 Mar 29;111(12 ):3280-92 - PubMed
  22. Protein Sci. 2000 Jun;9(6):1194-202 - PubMed
  23. Biophys J. 1993 Dec;65(6):2408-17 - PubMed
  24. J Am Chem Soc. 2004 Mar 17;126(10):3291-9 - PubMed
  25. Biochemistry. 1999 Dec 14;38(50):16424-31 - PubMed
  26. Biochemistry. 1996 May 14;35(19):6058-63 - PubMed
  27. Chem Rev. 2012 May 9;112(5):2604-28 - PubMed
  28. Biochemistry. 1992 Aug 25;31(33):7566-71 - PubMed
  29. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5179-84 - PubMed
  30. Analyst. 2009 Jan;134(1):138-47 - PubMed
  31. Protein Sci. 1995 Apr;4(4):716-28 - PubMed
  32. Analyst. 2012 Feb 7;137(3):555-62 - PubMed
  33. J Am Chem Soc. 2006 Oct 25;128(42):13789-95 - PubMed
  34. Science. 1993 Nov 5;262(5135):892-6 - PubMed
  35. J Phys Chem B. 2008 Sep 18;112(37):11762-9 - PubMed
  36. J Phys Chem B. 2005 Feb 24;109(7):3047-52 - PubMed
  37. J Phys Chem Lett. 2011 Feb 17;2(4):334-344 - PubMed
  38. J Mol Biol. 2002 Sep 6;322(1):163-78 - PubMed
  39. Analyst. 2011 Mar 21;136(6):1239-47 - PubMed
  40. Biochemistry. 1991 Jul 23;30(29):7219-24 - PubMed
  41. J Biol Chem. 2006 Sep 29;281(39):29165-73 - PubMed
  42. Biochemistry. 1992 Apr 14;31(14 ):3635-44 - PubMed
  43. J Am Chem Soc. 2001 Nov 28;123(47):11775-81 - PubMed
  44. J Mol Biol. 2005 Apr 15;347(5):1053-62 - PubMed
  45. Protein Sci. 1993 Apr;2(4):522-31 - PubMed
  46. J Phys Chem B. 2007 Jul 5;111(26):7675-80 - PubMed
  47. J Am Chem Soc. 1965 Jan 20;87:218-28 - PubMed
  48. FEBS Lett. 1990 Mar 12;262(1):20-4 - PubMed
  49. Chembiochem. 2011 Sep 19;12(14):2125-8 - PubMed
  50. J Am Chem Soc. 2007 Oct 24;129(42):12801-8 - PubMed
  51. Adv Protein Chem. 1995;47:83-229 - PubMed
  52. FEBS Lett. 1999 Jul 23;455(3):325-31 - PubMed

Publication Types

Grant support