Display options
Share it on

Front Oncol. 2020 Aug 21;10:1686. doi: 10.3389/fonc.2020.01686. eCollection 2020.

Moderately Hypofractionated Intensity Modulated Radiation Therapy With Simultaneous Integrated Boost for Prostate Cancer: Five-Year Toxicity Results From a Prospective Phase I/II Trial.

Frontiers in oncology

Anthony Ricco, Nitai Mukhopadhyay, Xiaoyan Deng, Diane Holdford, Vicki Skinner, Siddharth Saraiya, Drew Moghanaki, Mitchell S Anscher, Michael G Chang

Affiliations

  1. Massey Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, VA, United States.
  2. Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States.
  3. Virginia Commonwealth University Health System, Virginia Commonwealth University, Richmond, VA, United States.
  4. Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, United States.

PMID: 32974208 PMCID: PMC7471868 DOI: 10.3389/fonc.2020.01686

Abstract

BACKGROUND: In this phase I/II trial, 5-year physician-assessed toxicity and patient reported quality of life data is reported for patients undergoing moderately hypofractionated intensity modulated radiation therapy (IMRT) for prostate cancer using a simultaneous integrated boost (SIB) and pelvic lymph node (LN) coverage.

MATERIALS AND METHODS: Patients with T1-T2 localized prostate cancer were prospectively enrolled, receiving risk group based coverage of prostate ± seminal vesicles (SVs) ± pelvic lymph nodes (LNs). Low risk (LR) received 69.6 Gy/29 fractions to the prostate, while intermediate risk (IR) and high risk (HR) patients received 72 Gy/30fx to the prostate and 54Gy/30fx to the SVs. If predicted risk of LN involvement >15%, 50.4 Gy/30fx was delivered to pelvic LNs. Androgen deprivation therapy was given to IR and HR patients.

RESULTS: There were 55 patients enrolled and 49 patients evaluable at a median follow up of 60 months. Included were 11 (20%) LR, 23 (41.8%) IR, and 21 (38.2%) HR patients. Pelvic LN treatment was given in 25 patients (51%). Prevalence rates of late grade 2 GI toxicity at 1, 3, and 5 years was 5.8, 3.9, and 5.8%, respectively, with no permanent grade 3 events. Prevalence rates of late grade 2 GU toxicity at 1, 3, and 5 years rates were 15.4, 7.7, and 13.5%, respectively, with three grade 3 events (5.8%). The biochemical relapse free survival at 5 years was 88.3%. There were no local, regional, or distant failures, with all patients still alive at last follow up.

CONCLUSION: Moderate hypofractionation of localized prostate cancer utilizing a SIB technique and LN coverage produces tolerable acute/late toxicity. Given equivalent efficacy between moderate hypofractionation schedules, the optimal regimen will be determined by long-term toxicity reported from both the physician and patient perspective.

CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, identifier NCT01117935, Date of Registration: 5/6/2010.

Copyright © 2020 Ricco, Mukhopadhyay, Deng, Holdford, Skinner, Saraiya, Moghanaki, Anscher and Chang.

Keywords: clinical trial; gastrointestinal toxicity; genitourinary toxicity; moderate hypofractionation; patient reported outcome measures; pelvic lymph nodes; prostate radiation therapy; simultaneous integrated boost

References

  1. JAMA Oncol. 2018 Jun 14;4(6):e180039 - PubMed
  2. Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):413-20 - PubMed
  3. Pathol Oncol Res. 2020 Apr;26(2):905-912 - PubMed
  4. Int J Radiat Oncol Biol Phys. 2002 Jan 1;52(1):6-13 - PubMed
  5. Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):e353-62 - PubMed
  6. Int J Radiat Oncol Biol Phys. 2011 Jan 1;79(1):195-201 - PubMed
  7. Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):184-90 - PubMed
  8. JAMA. 2008 Jan 23;299(3):289-95 - PubMed
  9. Lancet Oncol. 2016 Aug;17(8):1061-1069 - PubMed
  10. Lancet Oncol. 2016 Apr;17(4):464-474 - PubMed
  11. JAMA Oncol. 2019 May 1;5(5):664-670 - PubMed
  12. Cancer Med. 2014 Oct;3(5):1313-21 - PubMed
  13. J Cancer Res Clin Oncol. 2017 Jul;143(7):1301-1309 - PubMed
  14. Int J Radiat Oncol Biol Phys. 2006 Nov 15;66(4):1072-83 - PubMed
  15. Int J Radiat Oncol Biol Phys. 2013 May 1;86(1):27-33 - PubMed
  16. Int J Radiat Oncol Biol Phys. 2018 Mar 15;100(4):871-873 - PubMed
  17. Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):e17-24 - PubMed
  18. Int J Radiat Oncol Biol Phys. 2019 Mar 15;103(4):823-833 - PubMed
  19. Strahlenther Onkol. 2012 Nov;188(11):990-6 - PubMed
  20. J Clin Oncol. 2013 Nov 1;31(31):3860-8 - PubMed
  21. N Engl J Med. 2009 Jun 11;360(24):2516-27 - PubMed
  22. J Clin Oncol. 2018 Oct 10;36(29):2943-2949 - PubMed
  23. J Clin Oncol. 2005 Sep 1;23(25):6132-8 - PubMed
  24. Int J Radiat Oncol Biol Phys. 2017 Mar 15;97(4):722-731 - PubMed
  25. Pract Radiat Oncol. 2018 Nov - Dec;8(6):354-360 - PubMed
  26. Int J Impot Res. 2002 Aug;14(4):245-50 - PubMed
  27. Int J Radiat Oncol Biol Phys. 2017 Nov 1;99(3):573-589 - PubMed
  28. Int J Radiat Oncol Biol Phys. 2013 Jan 1;85(1):89-94 - PubMed
  29. J Clin Oncol. 2017 Jun 10;35(17):1884-1890 - PubMed
  30. Int J Radiat Oncol Biol Phys. 1994 Jan 1;28(1):33-7 - PubMed
  31. Int J Radiat Oncol Biol Phys. 2019 Jul 15;104(4):790-797 - PubMed
  32. Prostate Cancer Prostatic Dis. 2018 Jun;21(2):269-276 - PubMed
  33. Technol Cancer Res Treat. 2009 Oct;8(5):353-59 - PubMed
  34. Int J Radiat Oncol Biol Phys. 2011 Oct 1;81(2):600-5 - PubMed
  35. Int J Radiat Oncol Biol Phys. 2004 Nov 15;60(4):1013-5 - PubMed
  36. J Clin Oncol. 2017 Jun 10;35(17):1891-1897 - PubMed
  37. Lancet Oncol. 2016 Aug;17(8):1047-1060 - PubMed
  38. Cancer. 1980 Apr 15;45(8):2220-4 - PubMed
  39. Clin Oncol (R Coll Radiol). 2016 Aug;28(8):490-500 - PubMed

Publication Types