Display options
Share it on

Acta Naturae. 2019 Apr-Jun;11(2):82-91. doi: 10.32607/20758251-2019-11-2-82-91.

The Profile of Post-translational Modifications of Histone H1 in Chromatin of Mouse Embryonic Stem Cells.

Acta naturae

T Yu Starkova, T O Artamonova, V V Ermakova, E V Chikhirzhina, M A Khodorkovskii, A N Tomilin

Affiliations

  1. Institute of Cytology of the Russian Academy of Sciences, Laboratory of Molecular Biology of Stem Cells, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia.
  2. Peter the Great St.Petersburg Polytechnic University, Politekhnicheskaya Str. 29, St. Petersburg, 195251 , Russia.
  3. Saint Petersburg State University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia.

PMID: 31413884 PMCID: PMC6643340 DOI: 10.32607/20758251-2019-11-2-82-91

Abstract

Linker histone H1 is one of the main chromatin proteins which plays an important role in organizing eukaryotic DNA into a compact structure. There is data indicating that cell type-specific post-translational modifications of H1 modulate chromatin activity. Here, we compared histone H1 variants from NIH/3T3, mouse embryonic fibroblasts (MEFs), and mouse embryonic stem (ES) cells using matrix-assisted laser desorption/ ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR-MS). We found significant differences in the nature and positions of the post-translational modifications (PTMs) of H1.3-H1.5 variants in ES cells compared to differentiated cells. For instance, methylation of K75 in the H1.2-1.4 variants; methylation of K108, K148, K151, K152 K154, K155, K160, K161, K179, and K185 in H1.1, as well as of K168 in H1.2; phosphorylation of S129, T146, T149, S159, S163, and S180 in H1.1, T180 in H1.2, and T155 in H1.3 were identified exclusively in ES cells. The H1.0 and H1.2 variants in ES cells were characterized by an enhanced acetylation and overall reduced expression levels. Most of the acetylation sites of the H1.0 and H1.2 variants from ES cells were located within their C-terminal tails known to be involved in the stabilization of the condensed chromatin. These data may be used for further studies aimed at analyzing the functional role played by the revealed histone H1 PTMs in the self-renewal and differentiation of pluripotent stem cells.

Keywords: 2-D electrophoresis; MALDI mass spectrometry; linker histone H1; mouse embryonic stem cells; post-translational modifications

References

  1. J Biol Chem. 1999 Aug 27;274(35):24914-20 - PubMed
  2. Mol Cell. 2000 Jun;5(6):905-15 - PubMed
  3. Mol Cell. 2000 Aug;6(2):225-31 - PubMed
  4. Physiol Chem Phys. 1975;7(1):23-30 - PubMed
  5. Gene. 2001 Jun 13;271(1):1-12 - PubMed
  6. J Cell Biochem. 2001;83(4):643-59 - PubMed
  7. Curr Opin Cell Biol. 2002 Jun;14(3):286-98 - PubMed
  8. Development. 2003 May;130(9):1817-24 - PubMed
  9. Genes Dev. 2003 Aug 1;17(15):1855-69 - PubMed
  10. J Biol Chem. 2004 Mar 5;279(10):8701-7 - PubMed
  11. Cell. 2004 Dec 29;119(7):941-53 - PubMed
  12. J Cell Biol. 2005 Mar 14;168(6):875-86 - PubMed
  13. J Biol Chem. 2005 Jul 29;280(30):27809-14 - PubMed
  14. J Biol Chem. 2005 Nov 11;280(45):38090-5 - PubMed
  15. Cell. 2005 Dec 29;123(7):1199-212 - PubMed
  16. J Biol Chem. 2006 Mar 10;281(10):6573-80 - PubMed
  17. Dev Cell. 2006 Jan;10(1):105-16 - PubMed
  18. Cell Cycle. 2006 Mar;5(6):589-91 - PubMed
  19. Mol Cell Proteomics. 2007 Jan;6(1):72-87 - PubMed
  20. Biol Chem. 2008 Apr;389(4):333-43 - PubMed
  21. Gene. 2009 Feb 15;431(1-2):1-12 - PubMed
  22. Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):101-13 - PubMed
  23. J Biol Chem. 2011 Oct 14;286(41):35347-57 - PubMed
  24. PLoS One. 2011;6(11):e27345 - PubMed
  25. Genes Dev. 2012 Apr 15;26(8):797-802 - PubMed
  26. J Biol Chem. 2012 Oct 12;287(42):34979-91 - PubMed
  27. Epigenetics. 2012 Oct;7(10):1098-108 - PubMed
  28. Exp Biol Med (Maywood). 2013 Mar;238(3):259-70 - PubMed
  29. Biochim Biophys Acta. 2014 Feb;1840(2):901-5 - PubMed
  30. Nucleic Acids Res. 2013 Nov;41(21):9593-609 - PubMed
  31. Nature. 2014 Mar 6;507(7490):104-8 - PubMed
  32. Science. 2014 Apr 25;344(6182):376-80 - PubMed
  33. Bioessays. 2015 Jan;37(1):46-51 - PubMed
  34. Cell Cycle. 2015;14(8):1268-73 - PubMed
  35. Mol Cell. 2015 Aug 20;59(4):628-38 - PubMed
  36. Biochim Biophys Acta. 2016 Mar;1859(3):431-5 - PubMed
  37. Biochim Biophys Acta. 2016 Mar;1859(3):510-9 - PubMed
  38. Biochim Biophys Acta. 2016 Mar;1859(3):476-85 - PubMed
  39. Sci Rep. 2016 Jan 11;6:19122 - PubMed
  40. Phys Biol. 2017 Feb 16;14(1):016005 - PubMed
  41. Nucleic Acids Res. 2017 Sep 29;45(17):9917-9930 - PubMed
  42. Nat Rev Mol Cell Biol. 2018 Mar;19(3):192-206 - PubMed
  43. J Biol Chem. 1995 Aug 25;270(34):20098-105 - PubMed
  44. Genes Dev. 1995 Mar 1;9(5):587-99 - PubMed
  45. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2969-74 - PubMed
  46. Mol Biol Evol. 1998 Jun;15(6):702-8 - PubMed
  47. J Biol Chem. 1998 Nov 27;273(48):32236-43 - PubMed

Publication Types